Homework Set 3

CH 353, Vanden Bout, Summer 2010

Chapter 22 8

Chapter 23 1, 6, 28, 36,

1.

Find a formula for the change in entropy for a gas that follows the van der Waals equation of state that changes volume isothermally between V_I and V_f .

To do this you need to take into account the change in internal energy with volume (the internal pressure) as $\Delta U \neq 0$.

$$\left(\frac{\partial U}{\partial V}\right)_T = T \left(\frac{\partial P}{\partial T}\right)_V - P$$

2. If can be shown that

$$C_p - C_V = \frac{\alpha^2 T V}{\kappa}$$

Use this result to show that $C_p - C_v = nR$ for and IG

Work example 22-6 in the book

3. Water has a higher density in its liquid state than its solid state. Therefore if you apply pressure, it will melt. The pressure at the bottom of a large object or fluid can be determined from the force of the weight of the mass on top of it. The pressure is given by $P = \rho gh$, where g is the acceleration due to gravity, h is the height of the substance, and ρ is the density of the material (be careful with your units). Using the data below and and pressure formula given in the problem how thick could a glacier made of pure water get before the bottom of the glacier would begin to melt at -5°C? You can assume $\Delta_{FUS}H^{\circ}$ and the densities are independent of temperature over this small range.

Density (solid) = 0.917 g/cm⁻³ Density (liquid) = 1.000 g/cm⁻³ Δ_{FUS} H° = 333.5 J g⁻¹ 4. Use the vapor pressures at various temperature for the liquid and solid for a substance **X** to find Δ_{SUB} H, Δ_{VAP} H, Δ_{FUS} H, and the triple point. The vapor pressure of solid **X** is 2.64 Torr at -112°C. At -126.5°C it is only 0.263 Torr. The vapor pressure of liquid **X** is 11.93 Torr at -100°C and 55.36 at -80°C.

5. Imagine a super-cooled liquid **X** at -10° C whose normal melting temperature is 0°C. If left alone the super-cooled water will remain a liquid for a long time even below its freezing point. In this metastable state it will be in equilibrium with vapor just like a normal liquid. The vapor pressure of super-cooled **X** at -10° C is 2.9×10^{-3} bar. Solid **X** at -10° C is also in equilibrium with **X** vapor and its vapor pressure is 2.6×10^{-3} bar. Using only the vapor pressures find Δ G for super-cooled **X** freezing to a solid at -10° C.