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The Properties of Gases

PROBLEMS AND SOLUTIONS

16-1. In an issue of the journal Science a few years ago, a research group discussed experiments in
which they determined the structure of cesium iodide crystals at a pressure of 302 gigapascals
(GPa). How many atmospheres and bars is this pressure?

2.98 x 10° atm, 3.02 x 10° bar

16-2. In meteorology, pressures are expressed in units of millibars (mbar). Convert 985 mbar to torr
and to atmospheres.

739 torr, 0.972 atm

16-3. Calculate the value of the pressure (in atm) exerted by a 33.9-foot column of water. Take the
density of water to be 1.00 g-mL™".

We first convert the height of the column to metric units: 33.9 ft = 10.33 m. Now

P = pgh = (1.00 kg -dm~)(98.067 dm-s~2)(103.3 dm)

n

= 1.013 x 10* kg-dm™" s>
= 1.013 x 10° Pa = 1.00 atm

16-4. At which temperature are the Celsius and Farenheit temperature scales equal?

—40°

16-5. A travel guide says that to convert Celsius temperatures to Farenheit temperatures, double the
Celsius temperature and add 30. Comment on this recipe.
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482 Chapter 16

This will provide a rough estimate of the temperature, decreasing in accuracy as temperature
increases. (Of course, it is not valid for Celsius temperatures below zero degrees.) At room

temperatures, it is accurate enough for ordinary purposes.

Actual T (°C) Actual T (°F) Travel T (°F)

0 32 30
10 50 50
20 68 70
30 86 90
40 104 110

16—6. Research in surface science is carried out using ultra-high vacuum chambers that can sustain
pressures as low as 107" torr. How many molecules are there in a 1.00-cm® volume inside such an
apparatus at 298 K? What is the corresponding molar volume V at this pressure and temperature?

We will assume ideal gas behavior, so

PV
5 =1 (16.1a)
(107" torr) (1.00 cm?)
=N
(82.058 cm®-atm-mol ™" - K~")(760 torr-atm™) (298 K)
538 x 10°® mol = n

so there are 3.24 x 10* molecules in the apparatus. The molar volume is

— Vv 1.00 cm?
7_Y 00 cm

e e = 1.86 x 10" cm®-mol™!

16-7. Use the following data for an unknown gas at 300 K to determine the molecular mass of the gas.

P/bar 10.1000 0.5000 1.000 1.01325 2.000

p/eL~ | 01771 0.8909 1796 1820  3.652

The line of best fit of a plot of P/p versus p will have an intercept of RT /M. Plotting, we find that
the intercept of this plot is 0.56558 bar-g™' .dm’, and so M = 44.10 g-mol™".

16-8. Recall from general chemistry that Dalton’s law of partial pressures says that each gas in a
mixture of ideal gases acts as if the other gases were not present. Use this fact to show that the
partial pressure exerted by each gas is given by

.

P.:(—-—j )P =y.P

j total 7" total
an

where P, is the partial pressure of the jth gas and y, is its mole fraction.
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16-15. Use both the van der Waals and the Redlich-Kwong equations to calculate the molar volur
of CO at 200 K and 1000 bar. Compare your result to the result you would get using the ideal-c .
equation. The experimental value is 0.04009 L-mol~!.

We can use the Newton-Raphson method (MathChapter G) to solve these cubic equations of si: .
We can express f(V) for the van der Waals equation as (Example 16-2)

_ —3 RT —2 a — ab
W=V —{b+— )V -V - —
£ ( T P) y iy

and (V) as

_ 2 RT\ - a
"(VY=3V —-2{b+ — )V + —
) (b+5)7+5
For CO, a = 1.4734 dm®-bar-mol™ and b = 0.039523 dm®-mol~" (Table 16.3). Then, using
the Newton-Raphson method, we find that the van der Waals equation gives a result of 7 =
0.04998 dm’-mol™". Likewise, we can express f(V) for the Redlich-Kwong equation as
(Equation 16.9)

—  —3 RT— ,  BRT A \—= AB
# f(V)ZV‘_PV“<B+ P _T1/2P> Ti2p
and f'(V) as
— =2 2RT— BRT A
‘V)=3V - —V - (B 4+ — — —
V) B ( += T‘/2P>

For CO, A = 17.208 dm®-bar-mol~*-K'* and B = 0.027394 dm’-mol~' (Table 16.4). Appl. -
the Newton-Raphson method, we find that the Redlich-Kwong equation gives a result o-
V =0.03866 dm*-mol ™", Finally, the ideal gas equation gives (Equation 16.1)

v — RT _ (0.083145 dm’-bar-mol~'-K™") (200 K)
P 1000 bar

The experimental value of 0.04009 dm®-mol™" is closest to the result given by the Redlich-K-

equation (the two values differ by about 3%).

= 0.01663 dm®-mol™!

16-16. Compare the pressures given by (a) the ideal-gas equation, (b) the van der Waals equa: -
(c) the Redlich-Kwong equation, and (d) the Peng-Robinson equation for propane at 400 .
and p = 10.62 mol-dm™. The experimental value is 400 bar. Take o = 9.6938 L.%.mol~> -
B = 0.05632 L-mol™" for the Peng-Robinson equation.
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“~e molar volume corresponding to a density of 10.62 mol-dm™ is 0.09416 dm®-mol~".

z. The ideal gas equation gives a pressure of (Equation 16.1)

_ RT _ (0.083145 dm’-bar-mol™'-K™')(400 K)

P 3 1
Vv 0.09416 dm”-mol

= 353.2 bar

0. The van der Waals equation gives a pressure of (Equation 16.5)

For propane, @ = 9.3919 dm®-bar-mol™ and b = 0.090494 dm*-mol~' (Table 16.3). Then

(0.083145 dm*-bar-mol™" - K~") (400 K) 9.3919 dm®-bar-mol ™

= 0.09416 dm’-mol~" — 0.090494 dm>-mol~' _ (0.09416 dm’ -mol ")’
= 8008 bar

¢. The Redlich-Kwong equation gives a pressure of (Equation 16.7)

RT A

P == — —
V—B T'"»V(V+B)

For propane, A = 183.02 dm® -bar-mol™2-K'? and B = 0.062723 dm®.mol™" (Table 16.4).
Then
_ (0.083145 dm’-bar-mol™"-~") (400 K)
"~ 0.09416 dm®-mol™" — 0.062723 dm®-mol ™"
183.02 dm®-bar-mol~2.K'/?

(400 K)'/2(0.09416 dm’-mol~')(0.09416 dm’-mol~' + 0.062723 dm®-mol~")
= 438.4 bar

d. The Peng-Robinson equation gives a pressure of (Equation 16.8)
RT o
V-8 VP AV -B)
For propane, & = 9.6938 dm®-bar-mol™2 and 8 = 0.05632 dm®-mol~'. Then

P

_ (0.083145 dm’-bar-mol™'-~')(400 K)
"~ 0.09416 dm*-mol™" — 0.05632 dm?-mol~’
9.6938 dm®-bar-mol™?

B (0.09416)(0.09416 + 0.05632) dm®-mol~* + (0.05632)(0.09416 — 0.05632) dm®-mol

= 284.2 bar

The Redlich-Kwong equation of state gives a pressure closest to the experimentally observed
pressure (the two values differ by about 10%).

16-17. Use the van der Waals equation and the Redlich-Kwong equation to calculate the value of the
pressure of one mole of ethane at 400.0 K confined to a volume of 83.26 cm®. The experimental
value is 400 bar.

Here, the molar volume of ethane is 0.08326 dm®-mol™".
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CHAPTER 1 9

The First Law of Thermodynamics

PROBLEMS AND SOLUTIONS

19-1. Suppose that a 10-kg mass of iron at 20°C is dropped from a height of 100 meters. What is the

kinetic energy of the mass just before it hits the ground? What is its speed? What would be the final
temperature of the mass if all its kinetic energy at impact is transformed into internal energy? Take
the molar heat capacity of iron to be EP =25.1 J-mol™"-K™" and the gravitational acceleration
constant to be 9.80 m-s~2.

Just before the mass hits the ground, all of the potential energy that the mass originally had will be
converted into kinetic energy. So

PE = mgh = (10kg)(9.80 m-s™2)(100 m) = 9.8 k] = KE

Since kinetic energy can be expressed as mv?®/2, the speed of the mass just before hitting the ground

is
) 1/2 8k 1/2
v, = (E — M = 44 m.s"l
4 m 10 kg

For a solid, the difference between _(fv and EP is small, so we can write AU = nEPAT
(Equation 19.39). Then

AT = J8 K =22K

I=x10'g
(——X——"j (25.1J-mol™ K~
55.85 g-mol

The final temperature of the iron mass is then 22.2°C.

19-2. Consider an ideal gas that occupies 2.50 dm® at a pressure of 3.00 bar. If the gas is compressed

isothermally at a constant external pressure, P, , so that the final volume is 0.500 dm?, calculate
the smallest value P, can have. Calculate the work involved using this value of P, .

Since the gas is ideal, we can write

p _ BVi _ (3.00ban(2.50 dm?)

= 15.0 bar
o, 0.500 dm’

The smallest possible value of P, is P,. The work done in this case is (Equation 19.1)

8.3145J-mol™". K~}
0.083145 bar-dm?* -mol~".K™!

ext

w=—P_ AV = (—15.0 bar)(—2.0 dm?) ( ) =30007J
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19-3. A one-mole sample of CO,(g) occupies 2.00 dm’ at a temperature of 300 K. If the gas is
compressed isothermally at a constant external pressure, P, so that the final volume is 0.750 dm”,
calculate the smallest value P can have, assuming that CO,(g) satisfies the van der Waals equation
of state under these conditions. Calculate the work involved using this value of P_.

The smallest value P_ can haveis P,, where P, is the final pressure of the gas. We can use the van
der Waals equation (Equation 16.5) and the constants given in Table 16.3 to find P,:

RT, a
P7 = = e — s
T V,=b
_(0.083145 dm’-bar-mol™'-K™)(300K)  3.6551 dm® bar-mol~
~0.750 dm*-mol™" — 0.042816 dm®-mol™! (0.750 dm®-mol™")?
= 28.8 bar

The work involved is (Equation 19.1)

w=—-PAV = —(28.8 x 10° Pa)(—1.25 x 10 m*) = 3.60 kJ

19-4. Calculate the work involved when one mole of an ideal gas is compressed reversibly from
1.00 bar to 5.00 bar at a constant temperature of 300 K.

Using the ideal gas equation, we find that

RT RT
j == A and V. = "
P % P

1 2

We can therefore write V,/V, = P,/ P,. Now we substitute into Equation 19.2 to find

nRT
w=-— | P dV=— dVv
ex V
v, P
=—nRTIh|—=)=—-nRTIlh|—
v] P2

= (—1 mol)(8.315J-mol™" - K ") (300 K) In0.2 = 4.01 kJ

19-5. Calculate the work involved when one mole of an ideal gas is expanded reversibly from 20.0 dm’

to 40.0 dm® at a constant temperature of 300 K.

We can integrate Equation 19.2 to find the work involved: 2

V
w=-—nRT In <~—Z>
Vl

= (=1 mol(8.315T-mol™"- K™ H(300K) In2 = —1.73kJ

19-6. Calculate the minimum amount of work required to compress 5.00 moles of an ideal gas
isothermally at 300 K from a volume of 100 dm® to 40.0 dm®.
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and, finally,

19-18. Show that

T, +R)/C (C,+R)/C,
Py v p y et RIG

for an adiabatic expansion of an ideal gas. Show that this formula reduces to Equation 19.23 for a
monatomic gas.

For an ideal gas,

PV, T,

it 4
pY, T,

We can substitute this expression into the equation from Problem 19-15 to write

P1 VI _ (Vl ey
sz.z a vz

Taking the reciprocal gives

and rearranging yields

(H—R/E\,)
171 = £V

For a monatomic ideal gas, C, = %R, SO

PV =p V" (19.23,

19-19. Calculate the work involved when one mole of a monatomic ideal gas at 298 K expands
reversibly and adiabatically from a pressure of 10.00 bar to a pressure of 5.00 bar.

Because this process is adiabatic, §¢ = 0. This means that
sw=dU=nC,dT

where Ev is temperature-independent (since the gas is ideal). We can use the equation from

Problem 19-17 to write
P R/C,
n=1(3)

For an ideal gas, —EP =5R/2, so

=226K

5.00 bar \*°
T, = (298 K)

10.00 bar
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19-24. Liquid sodium is being considered as an engine coolant. How many grams of sodium are
needed to absorb 1.0 MJ of heat if the temperature of the sodium is not to increase by more than
10°C. Take C, = 30.8J-K™"-mol™" for Na(l) and 75.2 J-K™"-mol™" for H,0(1).

We must have a coolant which can absorb 1.0 x 10° J without changing its temperature by more
than 10 K. The smallest amount of sodium required will allow the temperature to change by
exactly 10 K. We can consider this a constant-pressure process, because liquids are relatively
incompressible. Then, substituting AT = 10 K into Equation 19.40, we find

AH =C,AT =308 J-mol™
We require one mole of sodium to absorb 308 J of heat. Therefore, to absorb 1.0 MJ of heat, we

require
1 mol\ /22.
(1.0 x 1067y (2200) (22998 _ 74 64
3087 ) \ Tmol

74.6 kg of liquid sodium is needed.

19-25. A 25.0-g sample of copper at 363 K is placed in 100.0 g of water at 293 K. The copper and
water quickly come to the same temperature by the process of heat transfer from copper to water.
Calculate the final temperature of the water. The molar heat capacity of copper is 24.5 J-K~'-mol ™
and that of water is 75.2 J-K~'-mol ™',

The heat lost by the copper is gained by the water. Since AH = nC »AT (Equation 19.40), we can
let x be the final temperature of the system and write the heat lost by the copper as

( 250¢g

m) (245 J~I‘I’101—1 K_I)(363 K- X)

and the heat gained by the water as

( 100.0 g

W) (75.3 J-mol™" - K™ (x — 293 K)

Equating these two expressions gives

34957 — (9.628 - K™ )x = (418.0J- K™ )x — 1.224 x 10°J
1.259 x 10° K = 427.6x
295K = x

The final temperature of the water is 295 K.

19-26. A 10.0-kg sample of liquid water is used to cool an engine. Calculate the heat removed (in
igulcs) from the engine when the temperature of the water is raised from 293 K to 373 K. Take
C,=7523-K " -mol™" for H,O(l).

We can use Equation 19.40, where AT = 373 K — 293 K = 80 K. This gives

10.0 x 10° g

AH = nEPAT = (—"—‘—-_1
18.0152 g-mol

) (75.2J-mol™"-K™")(80 K) = 3340 kJ

3340 kJ of heat is removed by the water.
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19-34. Given the following data for sodium, plot H(T) — H(0) against T for sodium: melt-
ing point, 361 K; boiling point, 1156 K; A, H° = 2.60 kJ-mol™"; ALH = 97.4 kJ.mol™";
C,(s) =282T-mol™ K™ C,(1) = 32.7J-mol™"-K™'; C,(g) = 20.8J-mol™" - K~

We can use an extended form of Equation 19.46:

fu

H(T)— H() = /

0

T_A . . T -
C,()dT + A H + / "T,(dT + 8, H + / C,(@dT
T, T

fus viip

Notice the very large jump between the liquid and gaseous phases.

140 —
N
= |-
=
< 100
—
i~
S
|E 60
| -
~
|m 20*
| 1 I i | I
200 600 1000 1400
T/ K

19-35. The A H° values for the following equations are
2Fe(s) + 20,(g) > Fe,0,(s) A H° = —206kJ-mol™
3 Fe(s) +20,(g) — Fe,0,(s) A H°=—136kJ-mol™

o4 Use these data to calculate the value of A _H for the reaction described by

4Fe,0,(s) + Pe(s) — 3 Fe,0,(5)

Set up the problem so that the summation of two reactions will give the desired reaction:

4[FezO3(s) — 2 Fe(s) + %Oz(g)] A H = 4(206) kJ
+3[3 Fe(s) +20,(g) — Fe,0,(s)] A H = 3(-136) kJ

4 Fe,0,(s) + Fe(s)—>3 Fe,0,(s) AH =416k]

19-36. Given the following data,
1H,(g) + 1 F,(g) > HF(g) A H°=—-273.3kJ-mol™
H,(g) +30,(g) > H,0() A H°= —285.8kJ-mol™'
calculate the value of A_H for the reaction described by

2F,(g) + 2H,0(1) — 4 HF(g) + 0,(g)
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Set up the problem so that the summation of two reactions will give the desired reaction:
4[3H,(2) + ;F,(g) - HE(g)] A H =4(-273.3)K]
+ 2[H,0(1) — H,(g) + %Oz(g)] A H =72(285.8)kJ

2F, () + 2H,0()—4 HF(g) + O,(g) AH = —521.6kJ

19-37. The standard molar heats of combustion of the isomers m-xylene and p-xylene are

~4553.9 kJ-mol™" and —4556.8 kJ-mol™', respectively. Use these data, together with Hess’s
Law, to calculate the value of A_H°® for the reaction described by

m-xylene — p-xylene

Because m-xylene and p-xylene are isomers, their combustion equations are stoichiometrically
equivalent. We can therefore write

m-xylene — combustion products A H = —4553.9 kJ
-+ combustion products — p-xylene A H = +4556.8 k]

m-xylene— p-xylene AH=+29Kk]

19-38. Given that A H° = —2826.7 kJ for the combustion of 1.00 mol of fructose at 298.15 K,
C.H,,0,() + 6 0,(g) — 6 CO,(g) + 6 H,0()

and the A, H® data in Table 19.2, calculate the value of A H® for fructose at 298.15 K.

We are given A_H° for the combustion of fructose in the statement of the problem. We use the
values given in Table 19.2 for CO,(g), H,0(1), and O, (g):

A H°[CO,(g)] = —393.509 kJ-mol™" A H°[H,0(I)] = —285.83 kJ-mol™
AH[O,()]1=0
Now, by Hess’s law, we write
A H® = Z A H*[products] — Z A, H°[reactants]

—2826.7 kJ-mol™" = 6(—393.509 kJ-mol™") + 6(—285.83 kJ-mol™') — A _H°[fructose]
A H°[fructose] = 1249.3 kJ-mol™

19-39. Use the A H® data in Table 19.2 to calculate the value of A_H® for the combustion reactions
described by the equations:

a. CH,OH(]) + 2 0,(g) — CO,(g) + 2 H,0())
b. N,H,() + 0,(g) — N,(g) + 2 H,0())
Compare the heat of combustion per gram of the fuels CH,OH(l) and N, H ().
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We will need the following values from Table 19.2:

A H[CO,(@)] = ~393.509KI-mol™ A H(H,0()] = —285.83 kI-mol™
A HC[NH, (D] = +50.6 k-mol ™" A, H°[CH,OH(1)] = —239.1 kJ-mol™"
AfHO[Nz(g)] =0

a. Using Hess’s law,

AH = Z A, H°[products] — Z A, H°[reactants]
= 2(—285.83kJ) + (—393.5kJ) — (—239.1 k)

B —726.1 kJ I mol \ 297 Kl-o~!
~ \mol methanol ) \32.042¢g/ K8

AH = Z A, H°[products] — Z A, H°[reactants]
= 2(—285.83 kJ) — (+50.6 kJ)

_(—622.31(]) lmol \ 19.4 k]!
= \moiNH, /\32046g) =~ 7

More energy per gram is produced by combusting methanol.

b. Again, by Hess’s law,

19-40. Using Table 19.2, calculate the heat required to vaporize 1.00 mol of CCI, (1) at 298 K.

Cccl,(h — CCl,(g)
We can subtract A H°[CCl ()] from AfH"[CC]4 (g)] to find the heat required to vaporize CCl,:

A H = —102.9kJ + 135.44kJ =32.5kJ

19-41. Using the A H° data in Table 19.2, calculate the values of A_H® for the following:
a. C,H,(g) +H,0() — C,H;OH(I)
b. CH,(g) + 4 Cl,(g) — CCl,(1) +4 HCl(g)

In each case, state whether the reaction is endothermic or exothermic.

a. Using Hess’s law,
A H° = —277.69 kJ — (—285.83 k] + 52.28 kJ) = —44.14 kJ

This reaction is exothermic.

b. Again, by Hess’s law,
A H° = 4(—92.31 k) — 135.44 kI — (~74.81 kJ) = —429.87 kJ

This reaction is also exothermic.

19-42. Use the following data to calculate the value of A, H*® of water at 298 K and compare
your answer to the one you obtain from Table 19.2: A H® at 373 K = 40.7 kJ-mol™";
C,() =752T-mol” K™, C,(g) = 33.6J-mol " -K".
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We can solve this polynomial using Simpson’s rule or a numerical software package. Working in
Mathematica, we find that the final temperature will be 4040 K.

19-47. Explain why the adiabatic flame temperature defined in the previous problem is also called the
maximum flame temperature.

The adiabatic flame temperature is the temperature of the system if all the energy released as
heat stays within the system. Since we are considering an isolated system, the adiabatic flame
temperature is also the maximum temperature which the system can achieve.

19-48. How much energy as heat is required to raise the temperature of 2.00 moles of O,(g) from
298 K to 1273 K at 1.00 bar? Take

C,10,(2)]/R = 3.094 + (1.561 x 107 K™)T — (4.65 x 107 K3 T?

We can use Equation 19.44:

T,
AH :/'nc,dr
Tl L
1273
= (2.00 mol)R/ [3.094 4 (1.561 x 107 K™)T — (4.65 x 1077 K™)T?]|dT
298

= 64.795 kJ-mol™!

19-49. When one mole of an ideal gas is compressed adiabatically to one-half of its original volume.
the temperature of the gas increases from 273 K to 433 K. Assuming that C,, is independent of
temperature, calculate the value of C,, for this gas.

Equation 19.20 gives an expression for the reversible adiabatic expansion of an ideal gas:
— RT
C,dT = ———dV
Vv
Integrating both sides and substituting the temperatures given, we find that

[For=-f5

T.

C,In-2=—-Rln2
T "V]
— 433
Cvlﬂﬁ—g =—RIn2
C,
— =1.50
R 5

19-50. Use the van der Waals equation to calculate the minimum work required to expand one mole
of CO,(g) isothermally from a volume of 0.100 dm?’ to a volume of 100 dm® at 273 K. Compare
your result with that which you calculate assuming ideal behavior.
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