CH302 Spring 2009 Practice Exam 1 (a fairly easy exam to test basic concepts)

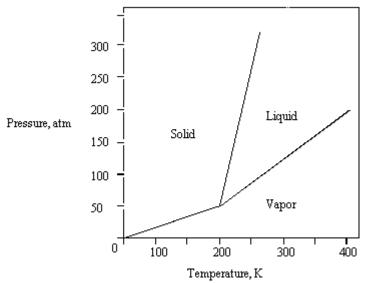
1) Complete the following statement:

We can expect ______ vapor pressure when the molecules of a liquid are held together by ______ intermolecular forces in the liquid and ______ vapor pressure when the intermolecular forces are strong.

- A. high; weak; low
- B. low; strong; high
- ^C Low; weak; high
- **D.** high; strong; low

Answer: A

2) A plot of ln(vapor pressure) versus 1/T for benzene gives a straight line with slope -3.70×10^3 K. The enthalpy of vaporization of benzene is


 $^{\circ}$ **B.** Not enough information is given to permit the calculation.

$$^{\circ}$$
 C. 3.70 kJ mol⁻¹.

- **D**. $30.8 \text{ kJ} \text{ mol}^{-1}$.
- **E.** 445 J mol⁻¹.

Answer: D

3) The phase diagram for a pure substance is given below.



The substance is stored in a container at 150 atm at 25°C. Describe what happens if the container is opened at 25°C.

- $^{\circ}$ A. The liquid in the container freezes.
- **B.** The solid in the container sublimes.
- C. The solid in the container melts.
- **D.** The vapor in the container escapes.
- $^{\circ}$ E. The liquid in the container vaporizes.

Answer: E

4) Consider the phase diagrams for water and carbon dioxide given in the text on page 315. Explain the following observations: A thin wire with weights attached is draped over a block of "dry ice," a second wire with weights is draped over a block of ice. The wire cuts through the ice but not through the "dry ice."

Answer: For water, increased pressure reduces the melting point, whereas for carbon dioxide the opposite is true. Remember, ice is less stable at high pressures.

5) For CaCl₂, the enthalpies of hydration and solution are -2337 and -81 kJ mol⁻¹, respectively, at 25°C. Calculate the lattice enthalpy of calcium chloride.

Answer: +2256 kJ mol⁻¹

- 6) Calculate the vapor pressure at 25°C of a mixture of benzene and toluene in which the mole fraction of benzene is 0.650. The vapor pressure at 25°C of benzene is 94.6 Torr and that of toluene is 29.1 Torr.
 - A. 84.4 Torr
 - **B.** 124 Torr
 - C. 51.3 Torr
 - **D.** 71.7 Torr
 - C E. 61.5 Torr

Answer: D

7) Of the following, which would likely dissolve in toluene?

Answer: E

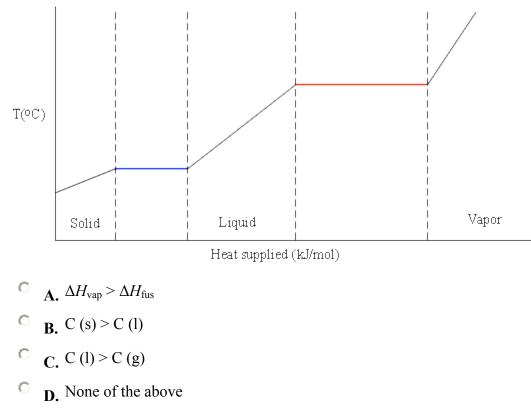
8) True or false: the van't Hoff *i* of HBr, HCl, and HF should all be the same?

Answer: False

9) The addition of 58 g of acetone to 10.0 kg of water lowers the water freezing point by 0.186°C. What is the molar mass of acetone? Give your answer to 2 significant figures.

- **10)** An animal cell assumes its normal volume when it is placed in a solution with a total solute molarity of 0.3 M. If the cell is placed in a solution with a total solute molarity of 0.1 M,
 - $^{\circ}$ A. water enters the cell, causing expansion.
 - **B.** water leaves the cell, causing contraction.
 - C, the escaping tendency of water in the cell increases.
 - \square **D**. no movement of water takes place.

Answer: A


- 11) When a certain solid dissolves, the disorder of a system increases (ΔS >0). Which of the following is concluded?
 - A. This solid is more soluble at higher temperatures.
 - **B.** This solid is less soluble at higher temperatures.
 - C. The change in Gibbs free energy becomes more positive at higher temperatures.
 - **D.** There is no change in Gibbs free energy at higher temperatures.

Answer: A

- **12)** You observe that the solubility of an inert gas increases as the temperature of the solution decreases. Which of the following statements explains this observation?
 - $^{\circ}$ A. The dissolution of the gas in water is an exothermic process.
 - **B.** The dissolution of the gas in water is driven by an increase in system entropy
 - $^{\circ}$ C. The dissolution of the gas in water is an endothermic process.
 - **D.** The dissolution of the gas in water is driven by a decrease in system entropy
 - $^{\circ}$ **E.** More than one of these statements explains the observation.

Answer: A

13) According to the given heat curve, which of the following statements is wrong?

Answer: D

14) Which of the following is the expression for the equilibrium constant for the reaction 4 $NH_3(g) + 5 O_2(g) \rightleftharpoons 4 NO(g) + 6 H_2O(g)$?

• A.
$$K = [(P_{NO})^4 \times (P_{H2O})^{12}] / [(P_{NH3})^{12} \times (PO_2)^{10}]$$

• B. $K = [6(P_{H2O}) \times 4(P_{NO})] / [5(P_{O2}) \times 4(P_{NH3})]$
• C. $K = [(P_{NH3})^4 \times (P_{O2})^5] / [(P_{NO})^4 \times (P_{H2O})^6]$
• D. $K = [(P_{H2O})^6 \times (P_{NO})^4] / [(P_{O2})^5 \times (P_{NH3})^4]$

Answer: D

- **15)** The standard Gibbs free energy of reaction for $2 O_3(g) \rightarrow 3 O_2(g)$ is $\Delta G_r^\circ = -326.4 \text{ kJ} \times \text{mol}^{-1}$ at 298 K. Calculate the equilibrium constant for this reaction.
 - A. 1.63×10^{57} • B. 11.7×10^{6} • C. 1.14

D. 6.14×10^{-58}

Answer: A

)

16 For the reaction

 $NH_3(g) + H_2S(g) \rightleftharpoons NH_4HS(s)$

 $K_c = 9.7$ at 900 K. If the initial concentrations of NH₃(g) and H₂S(g) are 2.0 *M*, what is the equilibrium concentration of H₂S(g)?

A. 1.9 M
B. 0.20 M
C. 1.7 M
D. 0.10 M
E. 0.32 M

Answer: E

- 17) The equilibrium constant *K* for the dissociation of $N_2O_4(g)$ to $NO_2(g)$ is 1700 at 500 K. Predict its value at 300 K. For this reaction, ΔH° is 56.8 kJ mol⁻¹.
 - A. 1.32×10^{-6} • B. 1.11×10^{-4} • C. 15.5 • D. 0.188 • E. 1.54×10^{7}

Answer: D

- **18)** Consider the gas-phase reaction, $N_2(g) + 3 H_2(g) \ll 2 NH_2(g)$, for which $K_p = 43$ at 400 K. If the mixture is analyzed and found to contain 0.18 bar of N_2 , 0.36 bar of H_2 and 0.62 bar of NH₃, describe the situation:
 - $^{\circ}$ A. Q < K and more reactants will be made to reach equilibrium.
 - $^{\circ}$ **B.** Q < K and more products will be made to reach equilibrium.
 - $^{\circ}$ C. Q > K and more reactants will be made to reach equilibrium.
 - $^{\circ}$ **D.** Q > K and more products will be made to reach equilibrium.

 $\Box_{\mathbf{E}_{\mathbf{A}}}$ Within 1 decimal place, $\mathbf{Q} = \mathbf{K}$ and the reaction is at equilibrium

Answer: C

- **19)** Consider the reaction $H_2(g) + Cl_2(g) \ll 2 HCl(g)$, which is exothermic as written. What would be the effect on the equilibrium position of decreasing the temperature?
 - A. Reaction would go to the right, making more "products"
 - **B.** Reaction would go to the left, making more "reactants"
 - C. Reaction would go to the left, making more "products"
 - D. Reaction would go to the right, making more "reactants"
 - $^{\circ}$ E. No change on the equilibrium position

Answer: A

- **20)** For each of the following equilibria, state whether reactants or products will be favored by an increase in the total pressure resulting from compression.
 - I. $CaC_2(s) + 2 H_2O(l) \rightleftharpoons Ca(OH)_2(s) + C_2H_2(g)$
 - II. $Ni(s) + 4 CO(g) \Longrightarrow Ni(CO)_4(g)$
 - A. I Reactants will be favored; II products will be favored.
 - **B.** I products will be favored; II Reactants will be favored.
 - C. I, II Reactants will be favored.
 - $^{\circ}$ **D.** I, II products will be favored.

Answer: A

- **21)** You watch a really exciting explosion occur in class as part of a demonstration designed to keep you at least moderately enthusiastic about chemistry. Which of the following is most likely the value of equilibrium constant's exponent for the reverse reaction?
 - A. 27
 B. -27
 C. 2
 D. -2

Answer: B

22) In a solution labeled "0.0018 M barium hydroxide" what is the molarity of OH-?

[℃] A. 0.0018 M

○ B. 0.00090 M

^O C. 0.0036 M

D. 0.0072 M

• E. None of the above.

Answer: C

23 The boxes below contain a series of 0.1 M aqueous solutions of increasing pH where A is the) solution of lowest pH and E is the solution of highest pH.

	А	В	С	D	Е
Match each box with the correct compound.					

phenol, $pK_a = 9.89$ cyanide ion, $pK_b = 4.69$ pyridine, $pK_b = 8.75$ hydrogen sulfate ion, $pK_a = 1.92$ sodium nitrate

Answer: phenol, $pK_a = 9.89$ (B) cyanide ion, $pK_b = 4.69$ (E) pyridine, $pK_b = 8.75$ (D) hydrogen sulfate ion $pK_a = 1.92$ (A) sodium nitrate (C)

24) Which of the following statements about the autoprotolysis of water is not correct?

 $^{\circ}$ A. Neutral solutions of water always have an equal number of protons and hydroxides.

- **B.** The concentration of water in water, in molarity units, is about equal to the speed limit on highways during the Carter presidency.
- $^{\circ}$ C. The autoprotolysis of water produces hydrogen and oxygen gas.
- **D.** The dissociation constant associated with the dissociation of water suggests a free energy of reaction that is a positive number.

 $^{\circ}$ E. The pH always equals the pOH in a pure water solution.

Answer: C

25) You have learned in class that as the temperature of a water solution increases, the value of

Kw increases and the pH of solution decreases. What does this say about the enthalpy of water dissociation?

- A. It is endothermic
- $^{\circ}$ **B.** It is exothermic
- $^{\circ}$ C. Kw is less than 1 so it is neither endothermic or exothermic.

Answer: A

- **26)** What are the values for OH-, pH and pOH, respectively, if a aqueous solution is found to have a proton concentration of 10M?
 - $^{\circ}$ A. This cannot happen because pH cannot be less than 0.
 - **B.** 10e-7, 7, 7
 - ^C C. 10e-15, -1, 15
 - **D.** 10e-15, 15, -1
 - E. 10, 10e-15, 15

Answer: C

- **27)** Confronted by a collection of salts, each of which has an identical solubility product constant, which one would have the lowest molar solubility?
 - A. A salt of the form AB
 - $^{\circ}$ **B.** A salt of the form A₂B
 - $^{\circ}$ C. A salt of the form AB₂
 - $^{\circ}$ **D.** A salt of the form AB₃
 - $^{\circ}$ E. A salt of the form A₂B₃

Answer: A

28) What is the pH of a 0.01 M weak acid solution with a K_a value of 10e-4? (Please don't use a calculator to work this problem.)

A. 2
B. 3
C. 4
D. 5

° _{E.} 6

Answer: B

- **29)** What is the pH of a 0.01 M solution of ammonia solution with a pK_b of 4.6? (Again, using a calculator would be kind of sad.)
 - A. 7.4
 B. 6.6
 C. 10.7
 D. 3.3
 E. 11

Answer: C

- **30)** What is the molar solubility of MgF_2 which has a K_{sp} of 4 x 10e-12? (And again, using a calculator would be kind of sad.)
 - A. 4 x 10e-12
 B. 4 x 10e-4
 C. 2 x 10e-6
 D. 1 x 10e-4

Answer: D