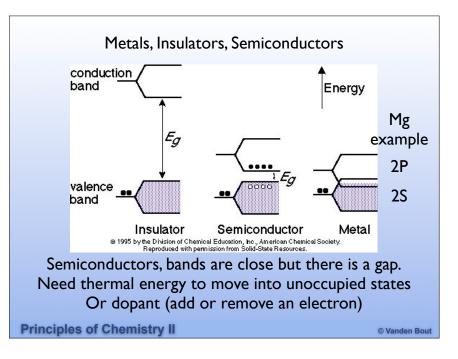
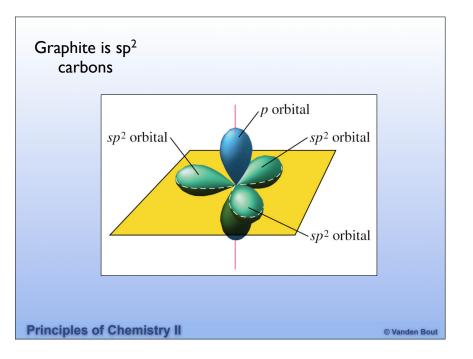
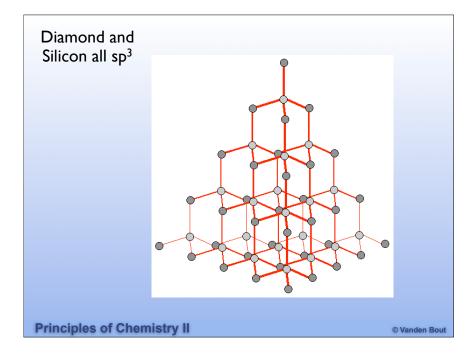
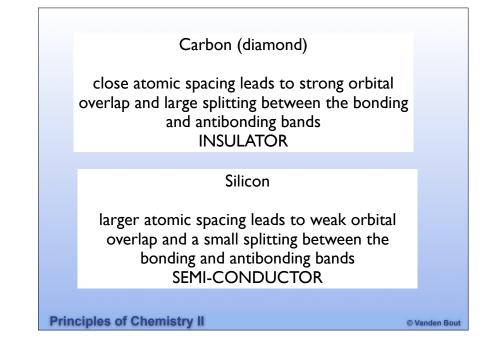

© Vanden Bout


Principles of Chemistry II

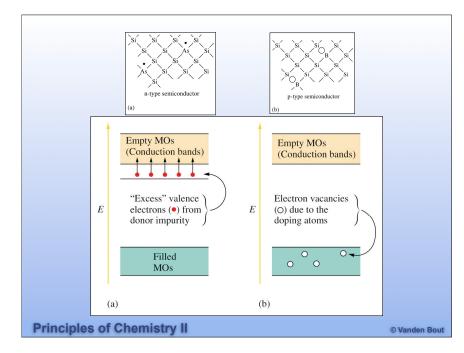


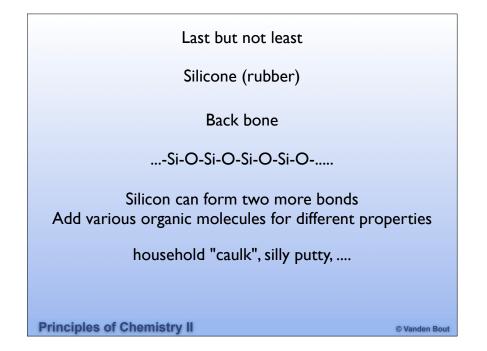

Why is Silicon semiconducting while Diamond is an insulator (same structure)


A. Silicon is larger so their is less interaction between the atoms and a lower splitting between the levels

B. Silicon is smaller so their is less interaction between the atoms and a lower splitting between the levels

C. Silicon is larger so their is more interaction between the atoms and a greater splitting between the levels

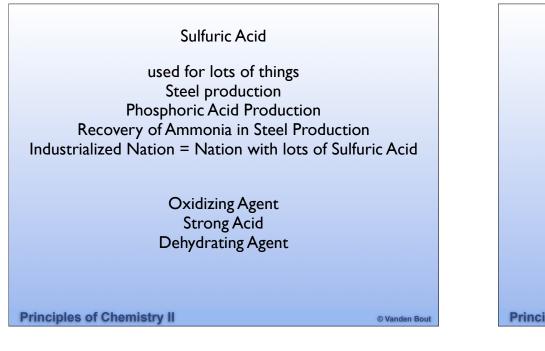

How might you "add an electron" to silicon?

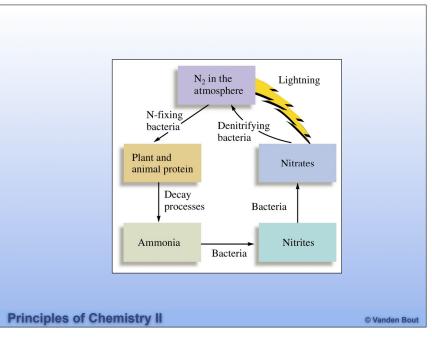

- A. Substitute a P for a silicon atom in the solid
- B. Substitute a B for a silicon atom in the solid
- C. Substitue a C for a silicon atom in the solid

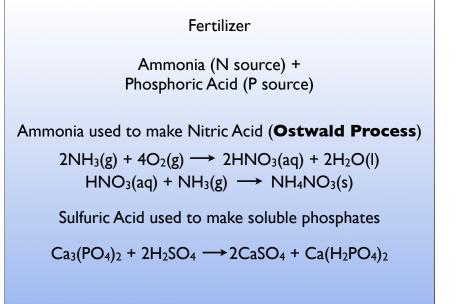
Group III will take an electron and "leave" a positive charge in the Si lattice P-doping (P = positive)

Group V will "give an electron" and resulting in a negative charge in the Si lattice N-doping (N = negative)

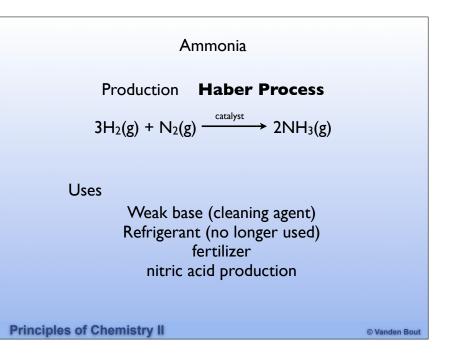
© Vanden Bout

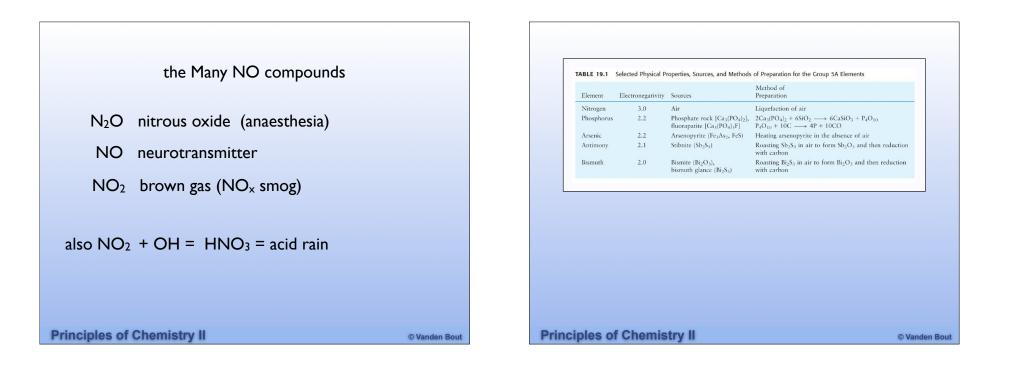


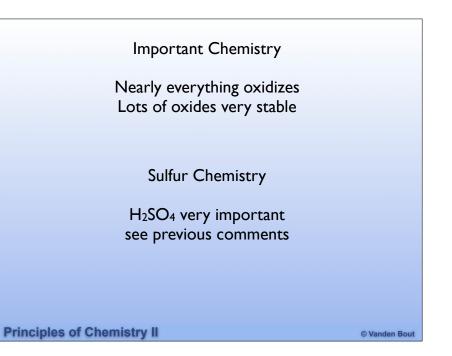


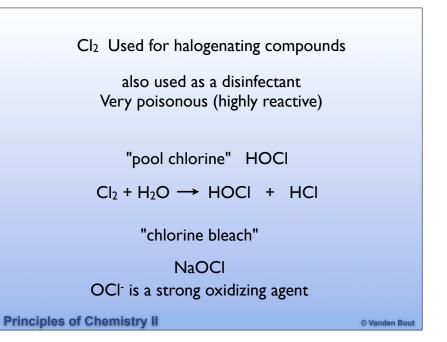

Group V, VI, VII	
Four very important chemicals	
Phophoric Acid (H ₃ PO ₄) Ammonia (NH ₃) Sulfuric Acid (H ₂ SO ₄) Chlorine Gas (Cl ₂)	
Principles of Chemistry II	© Vanden Bout

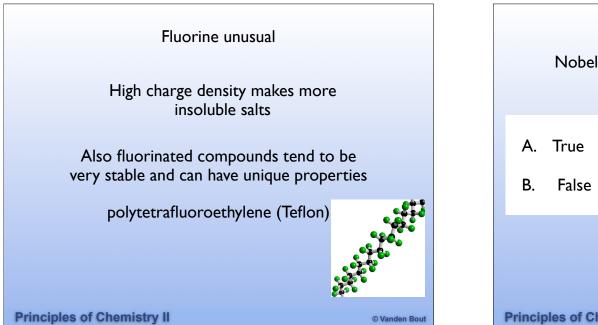
4 Largest Production	Chemical in the US
----------------------	--------------------


Am	minum sulfate₅		1992	1993	1994	1995	1996 1997	1998	1999	2000	2001	
		1,185	1,047	1,050	1,140	1,144	1,197	1,161	1,166	1,196	1,09	
Am	monia _{c,d}	17,169	17,924	17,195	17,869	17,403	17,923	17,891	18,475	17,337	16,8	
	monium nitrate∘	7,819	7,981	8,280	8,568	8,489	8,498	8,604	9,079	7,630	7,49	
	monium sulfater	2,243	2,391	2,432	2,584	2,647	2,662	2,702	2,787	2,599	2,86	
	orineg	11,572	11,757	12,079	12,187	12,395	12,460	12,922	12,841	13,353	13,1	
	frochloric acidh	3,301	3,610	3,492	3,754	3,904	4,116	4,570	4,659	4,499	4,71	
	irogen, bcf, 100%i.j	153	162	213	331	352	386	526	552	454	481	
	ic acid, 100%k	7,927	8,136	8,254	8,714	8,840	9,205	9,433	9,285	8,945	8,47	
Nitro	ogen gas, bcf, 100%i.i	770	818	796	870	844	816	809	871	858	933	
Оху	/gen, bcf, 100%i	470	515	547	605	630	682	743	676	685	661	1
Pho	sphoric acid, P2O5	12,109	12,826	11,515	12,792	13,134	13,210	13,159	13,891	13,708	13,1	
Sod	lium chlorate	449	555	539	559	617	662	626	779	818	939	9
Sod	lium hydroxide	11,713	12,244	12,466	12,539	11,408	11,563	10,973	13,113	13,199	11,5	18
Sod	tium sulfaten	794	609	592	652	711	664	706	629	660	509	569
Sulf	furic acidn	43,466	44,524	39,839	44,813	47,519	47,770	47,929	48,512	44,756	44,032	40,054
Tita	nium dioxide。	1,095	1,253	1,279	1,380	1,382	1,352	1,466	1,459	1,493	1,547	1,463




© Vanden Bout


© Vanden Bout


ABLE 19.4	Selected Physical Pr	operties, Sources, and Me	ethods of Preparation for the O	Group 6A Elements
Element	Electronegativity	Radius of X2- (pm)	Source	Method of Preparation
Oxygen	3.4	140	Air	Distillation from liquid air
Sulfur	2.6	184	Sulfur deposits	Melted with hot water and pumped to the surface
Selenium	2.6	198	Impurity in sulfide ores	Reduction of H2SeO4 with SO2
Tellurium	2.1	221	Nagyagite (mixed sulfide and telluride)	Reduction of ore with SO_2
Polonium	2.0	230	Pitchblende	

				Ha	loge	ns		
Γ	Need	I	Excelle High i Sma	ent o ioniza Il atc	xidiz atior oms a	e a nobel ting agent n energies and ions egativities		ure
	TABLE 19.7	Some Physical F	Properties, Source	es, and Meth	ods of Prepa	aration for the Group 7A E	lements	
	Element	Color and State	Percentage of Earth's Crust	Melting Point (°C)	Boiling Point (°C)	Sources	Method of Preparation	
	Fluorine	Pale yellow gas	0.07	-220	-188	Fluorospar (CaF ₂), cryolite (Na ₃ AlF ₆), fluorapatite [Ca ₅ (PO ₄) ₃ F]	Electrolysis of molten KHF_2	
	Chlorine	Yellow-green gas	0.14	-101	-34	Rock salt (NaCl), halite (NaCl), sylvite (KCl)	Electrolysis of aqueous NaCl	
	Bromine	Red-brown liquid	$2.5 imes 10^{-4}$	-7.3	59	Seawater, brine wells	Oxidation of Br ⁻ by Cl ₂	
	Iodine	Violet-black solid	$3 imes 10^{-5}$	113	184	Seaweed, brine wells	Oxidation of I ⁻ by electrolysis or MnO ₂	
Princi	iples o	f Chem	istry II					© Vanden Bout


ABLE 19.11 Some Com	pounds of the Halogens with	Nonmetals		
Compounds with Group 3A Nonmetals	Compounds with Group 4A Nonmetals	Compounds with Group 5A Nonmetals	Compounds with Group 6A Nonmetals	Compounds with Group 7A Nonmetals
BX ₃ (X = F, Cl, Br, I) BF ₄ ⁻	$\begin{array}{l} {\rm CX_4}~({\rm X}={\rm F},{\rm Cl},{\rm Br},{\rm I})\\ {\rm SiF_4}^{2-}\\ {\rm SiCl_4}\\ {\rm GeF_4}\\ {\rm GeF_6}^{2}\\ {\rm GeCl_4} \end{array}$	$\begin{array}{l} NX_{3}\;(X=F,Cl,Br,l)\\ N_{2}F_{4}\\ PX_{3}\;(X=F,Cl,Br,l)\\ PF_{5}\\ PCl_{5}\\ PBr_{5}\\ AsF_{5}\\ SbF_{5}\\ SbF_{5}\\ \end{array}$	$\begin{array}{l} OF_{7}\\ OJ_{F_{2}}\\ OJF_{2}\\ OBr_{2}\\ SF_{2}\\ SCl_{3}\\ S_{7}Cl_{2}\\ SF_{4}\\ SF_{6}\\ SF_{4}\\ SF_{6}\\ SF_{6}\\ SeF_{4}\\ SF_{6}\\ SeF_{4}\\ SeF_{4}\\ SeF_{4}\\ SeBr_{6}\\ SeBr_{6}\\ FeF_{4}\\ TeF_{4}\\ TeF_$	ICI IBr BrF BrCI CIF CIF ICI ₃ IICI ₃ IICI ₃ IIF ₃ CIF ₅ IIF ₅ IIF ₇

Nobel Gases cannot form a compound with any other element?
A. True B. False
Principles of Chemistry II © Vanden Bout

True or False

