

TABLE 15.4I $NH_4^+(aq) + NO$	nitial Rates from Th $_2^{-}(aq) \longrightarrow N_2(g)$	ree Experiments for $+ 2H_2O(l)$	or the Reaction
Experiment	Initial Concentration of NH4 ⁺	Initial Concentration of NO ₂ ⁻	Initial Rate (mol $L^{-1} s^{-1}$)
$ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} $	0.100 M 0.100 M 0.200 M	0.0050 M 0.010 M 0.010 M	$\frac{1.35 \times 10^{-7}}{2.70 \times 10^{-7}}$ 5.40 × 10^{-7}

	Order		
	Zero	First	Second
Rate law	Rate $= k$	Rate = k [A]	Rate = $k[A]^2$
Integrated rate law	$[\mathbf{A}] = -kt + [\mathbf{A}]_0$	$\ln[\mathbf{A}] = -kt + \ln[\mathbf{A}]_0$	$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$
Plot needed to give a straight line	[A] versus t	ln[A] versus t	$\frac{1}{[A]}$ versus t
Relationship of rate constant to the slope of straight line	Slope = $-k$	Slope = $-k$	Slope $= k$
Half-life	$t_{1/2} = \frac{[A]_0}{2L}$	$t_{1/2} = \frac{0.693}{1}$	$t_{1/2} = \frac{1}{1 + 1}$

Principles of Chemistry II

© Vanden Bout