

	Giv which do Cl ₂ (g) I ₂ (s) Br ₂ (l)	en following standard reduction potential, you think would make the best reducing agent? + $2e^{-} \rightarrow 2Cl^{-}$ $E^{\circ} = 1.36 \vee$ + $2e^{-} \rightarrow 2l^{-}$ $E^{\circ} = 0.54 \vee$ + $2e^{-} \rightarrow 2Br^{-}$ $E^{\circ} = 1.06 \vee$	
A.	Cl-	reducing agents are oxidized	
B.	Cl ₂	hardest to reduce is easiest to oxidize	3
C.	I ₂	Lowest potential	
D.	ŀ	Need to pick the reduced species	
E.	Br ₂	(it can be oxidized)	
rinciples of Chemistry II © Vanden Bout			

You reduce H^+ to H_2 in an electrochemical cell. Your cell has a current of 1 Amp for 10 minutes What is the total charge that is passed through the cell?

You reduce H^+ to H_2 in an electrochemical cell. Your cell has a current of 1 Amp for 10 minutes How many moles of electrons pass through the cell?

You reduce H^+ to H_2 in an electrochemical cell. The number of moles of electrons that pass through the cell is 6.2 x 10⁻³. How many moles of H_2 are formed?

$$2H^+ + 2e^- ----> H_2(g)$$

A. 6.2×10^{-3}

B. 3.1×10^{-3} C. 1.2×10^{-2} For every mole of H₂ you need two moles of electrons

Principles of Chemistry II

I M Zn²⁺ (aq) and I M Cu²⁺ (aq) standard
Zn(s) + Cu²⁺(aq)
$$\longleftrightarrow$$
 Zn²⁺ (aq) + Cu(s)

$$Q = \frac{[Zn^{2+}]}{[Cu^{2+}]} = \frac{1}{1} = 1$$

$$E = E^{\circ} - \frac{0.0591}{n} \log Q$$

$$E = 1.10 \vee - \frac{0.0591}{2} \log(1) = 1.10 \vee$$

$$10^{-3} \text{ M } \mathbb{Z}n^{2+} \text{ (aq) and } 10^{-1} \text{ M } \mathbb{C}u^{2+} \text{ (aq) } ???$$

$$\mathbb{Z}n(s) + \mathbb{C}u^{2+}(aq) \longleftrightarrow \mathbb{Z}n^{2+} \text{ (aq) } + \mathbb{C}u(s)$$

$$Q = \frac{[\mathbb{Z}n^{2+}]}{[\mathbb{C}u^{2+}]} = \frac{(10^{-3})}{(10^{-1})} = 10^{-2}$$

$$E = E^{\circ} - \frac{0.0591}{n} \log Q$$

$$E = 1.10 \text{ V} - \frac{0.0591}{2} \log(10^{-2}) = 1.16 \text{ V}$$

$$E = E^{\circ} - \frac{0.0591}{n} \log Q$$
Current will flow until E = 0
Equilibrium
$$E^{\circ} = + \frac{0.0591}{n} \log K$$

$$\log K = \frac{nE^{\circ}}{0.0591}$$

Principles of Chemistry II

© Vanden Bout

