

Silver Nitrate (AgNO₃) and Potassium Chloride (KCl) are both soluble salts. What will happen if I mix 100 mL of I M AgNO₃ solution with 200 ml of I M KCl solution given that K_{sp} for AgCl is 1.8 x 10⁻¹⁰

- A. I'll have a solution with Ag^+ , Cl^- , K^+ , and NO_3^- ions
- B. some solid AgCI will form
- C. both A & B

Principles of Chemistry II

<section-header><text><text><text><text><text>

Principles of Chemistry II

© Vanden Bout

Citric Acid $K_{a1} = 7.4 \times 10^{-4} \quad K_{a2} = 1.7 \times 10^{-5} \quad K_{a3} = 4.0 \times 10^{-7}$ Imagine that it was monoprotic $(H^+) = x = \sqrt{K_a C_a} = \sqrt{(7.4 \times 10^{-4})(1)} = 0.027$ Lets look at K_{a2} $K_{a2} = (H^+) \underbrace{(HA^2)}_{(H2A^2)} \qquad \underbrace{(HA^2)}_{(H2A^2)} = \underbrace{K_{a2}}_{(H^+)} = \underbrace{1.7 \times 10^{-5}}_{0.027} = 6.3 \times 10^{-4}$ This is a very small number very very little HA²⁻ the second proton doesn't come off pH is dominated by the first proton equilibrium

What is the pH of a solution with 0.5 M HPO₄²⁻? $H_{3}PO_{4} \quad K_{a1} = 7.1 \times 10^{-3}$ $K_{a2} = 6.3 \times 10^{-8}$ $K_{a3} = 4.5 \times 10^{-13}$ to simplify we'll use the generic notation HPO₄²⁻ is HA²⁻ HA²⁻ is found in equilibria 2 & 3 $K_{a2} = \frac{[H^+][HA^{2-}]}{[H_{2}A^{-}]} \quad K_{a3} = \frac{[H^+][A^{3-}]}{[HA^{2-}]}$ Species that are both acids and bases are "Amphiprotic"

Principles of Chemistry II

© Vanden Bout

