This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

Msci 18 0907

001 10.0 points

What is the concentration of SO_4^{2-} in 2.0 M H₂SO₄? K_{a1} is strong and $K_{a2} = 1.2 \times 10^{-2}$.

- 1. 4.0×10^{-1} M
- **2.** 4.0×10^{-2} M
- **3.** 1.0×10^{-7} M
- 4. 2.0×10^{-1} M
- **5.** 1.2×10^{-2} M correct

Explanation:

Msci 20 0604

 $\mathbf{002}$ 10.0 points AgCl would be least soluble in

1. 0.1 M HNO₃.

2. 0.1 M NH₃.

3. pure water.

4. 0.1 M CaCl₂. correct

5.0.1 M HCl.

Explanation:

2.

Msci 20 0402b

003 10.0 points Consider the following $K_{\rm sp}$ values for metal carbonates: $CdCO_3 = 2.5 \times 10^{-14}$ $CoCO_3 = 8.0 \times 10^{-13}$ $CuCO_3 = 2.5 \times 10^{-10} PbCO_3 = 1.5 \times 10^{-13}$ Which pair would best be separated by fractional precipitation? **1.** Cd^{2+} and Cu^{2+} correct

3. Cu^{2+} and Pb^{2+} **4.** Cd^{2+} and Co^{2+} **5.** Co^{2+} and Pb^{2+}

6. Cd^{2+} and Pb^{2+}

Explanation:

All the salts are 1:1 ratios so the $K_{\rm sp}$'s can be directly compared for solubility. The pair that will be the easiest to separate will be the pair that have their $K_{\rm sp}$ values the farthest apart (Cd and Cu).

DAL Hydron Concen 004 10.0 points

Which of the following solutions of weak acids has a hydronium ion concentration that is most accurately calculated by

$$[H_3O^+] = (K_aC_a)^{1/2}$$

1. CH₃COOH, $K_{\rm a} = 1.8 \times 10^{-5}, C_{\rm a} = 0.001$ Μ

2. HCOOH, $K_{\rm a} = 1.8 \times 10^{-4}$, $C_{\rm a} = 0.01$ M

3. HCOOH, $K_{\rm a} = 1.8 \times 10^{-4}$, $C_{\rm a} = 0.001$ Μ

4. CH₃COOH, $K_{\rm a} = 1.8 \times 10^{-5}$, $C_{\rm a} = 0.01$ M correct

Explanation:

Msci 18 0357

00510.0 points What is the pH of a solution labeled $1.6 \times$ $10^{-6} \text{ M KOH}?$ **1.** 8.2 **correct 2.** 8.8

3. 6.6

5. 5.2

4. 7.4

$$\mathrm{Co}^{2+}$$
 and Cu^{2+}

Explanation:

 $[KOH] = 1.6 \times 10^{-6} M$

$$\mathrm{KOH} \rightleftharpoons \mathrm{K}^+ + \mathrm{OH}^-$$

$$[OH^{-}] = [KOH] = 1.6 \times 10^{-6} M$$

$$pOH = -\log[OH^{-}] = -\log(1.6 \times 10^{-6})$$
$$= 5.79588$$

pH = 14 - pOH = 14 - 5.79588 = 8.20412

DAL Mass Charge Balance 006 10.0 points

Which of the following is a correct mass balance expression for the addition of H_2CO_3 to water?

1. $C_{\text{H}_2\text{CO}_3} = [\text{H}_2\text{CO}_3] + [\text{HCO}_3^-] + [\text{CO}_3^{2-}]$ correct

- **2.** $[\mathrm{H}^+] = [\mathrm{HCO}_3^-] + [\mathrm{CO}_3^{2-}] + [\mathrm{OH}^-]$
- **3.** $C_{\text{H}_2\text{CO}_3} = [\text{HCO}_3^-] + [\text{CO}_3^{2-}]$
- 4. $K_{\rm w} = [{\rm H}^+] + [{\rm OH}^-]$

Explanation:

Sys Treat Equil 01 007 10.0 points

NaF, NaCl, and HBr are dissolved in water. How many equations are needed to describe this system?

1. 6

2. 8

3. 5

4.7 correct

5. 4

Explanation:

The species Na⁺, HF, F⁻, Cl⁻, Br⁻, H⁺, and OH⁻ will be present in the water.

008 10.0 points

Solid Mg(OH)₂, which has a solubility product constant of 1.5×10^{-11} , dissolves in water when NH₄Cl is added to the solution because

1. OH⁻ ion reacts with Cl⁻ ion to form the weak acid HClO.

2. $MgCl_2$ is a salt and completely ionized in water solution.

3. one of the ions from $Mg(OH)_2$ is oxidized to form a different species.

4. Mg^{+2} forms a very stable complex ion with ammonia.

5. OH^- ion is converted to NH_4OH by reaction with NH_4^+ . correct

Explanation: