This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

ChemPrin3e T11 28

00110.0 points

Which of the following mixtures gives a buffer with a pH less than 7.0 ? For acetic acid, $K_{\mathrm{a}}=1.8 \times 10^{-5}$ and for $\mathrm{NH}_{3}, K_{\mathrm{b}}=1.8 \times 10^{-5}$.

1. 10 mL of 0.1 M aqueous acetic acid +10 mL of $0.1 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$
2. 10 mL of $0.1 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})+10 \mathrm{~mL}$ of 0.1 $\mathrm{M} \mathrm{HCl}(\mathrm{aq})$
3. 10 mL of 0.1 M aqueous acetic acid +5.0 mL of $0.1 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ correct
4. 10 mL of $0.1 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})+5.0 \mathrm{~mL}$ of 0.1 $\mathrm{M} \mathrm{HCl}(\mathrm{aq})$
5. 10 mL of 0.1 M aqueous acetic acid +10 mL of $0.1 \mathrm{M} \mathrm{NH}_{3}(\mathrm{aq})$

Explanation:

Sparks buffer 003
 00210.0 points

What is the pH of a solution made to be 0.5 M in HCN and 0.3 M in NaCN ? K_{a} for HCN is 4.0×10^{-10}.

1. 9.17 correct

2. 6.67
3. 6.67×10^{-10}
4. 9.6
5. 4.83
6. 7.33

Explanation:

Msci 190730

00310.0 points

A 100 mL portion of 0.3 M acetic acid is being titrated with 0.2 M NaOH solution. What is the pH of the solution after 100 mL of the NaOH solution has been added? The ionization constant of acetic acid is 1.8×10^{-5}.

1. $\mathrm{pH}=4$
2. $\mathrm{pH}=4.32$
3. $\mathrm{pH}=5.27$
4. $\mathrm{pH}=5.05$ correct
5. $\mathrm{pH}=4.71$

Explanation:

$V_{\mathrm{CH}_{3} \mathrm{COOH}}=100 \mathrm{~mL} \quad\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.3 \mathrm{M}$
$V_{\mathrm{NaOH}}=100 \mathrm{~mL} \quad[\mathrm{NaOH}]=0.2 \mathrm{M}$
$K_{\mathrm{a}}=1.8 \times 10^{-5}$
For $\mathrm{CH}_{3} \mathrm{COOH},(0.3 \mathrm{M})(0.1 \mathrm{~L})=0.03 \mathrm{~mol}$
For $\mathrm{NaOH},(0.2 \mathrm{M})(0.1 \mathrm{~L})=0.02 \mathrm{~mol}$

$\mathrm{CH}_{3} \mathrm{COOH}+$	NaOH	$\rightarrow \mathrm{NaCH}_{3} \mathrm{COO}$
$+\mathrm{H}_{2} \mathrm{O}$		
0.03 mol	0.02 mol	0 mol
-0.02 mol	-0.02 mol	+0.02 mol
0.01 mol	0 mol	0.02 mol

Thus

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \\
1.8 \times 10^{-5} & =\frac{0.1 x}{0.05} \\
x & =\left[\mathrm{H}^{+}\right]=\frac{K_{\mathrm{a}}\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]} \\
& =\frac{\left(1.8 \times 10^{-5}\right)(0.05)}{0.1} \\
& =9 \times 10^{-6}
\end{aligned}
$$

Thus

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=5.04576
$$

$004 \quad 10.0$ points

What is the $\mathrm{p} K_{\mathrm{a}}$ of the acid titrated in this pH curve?

1. 6.8
2. 9.0

3. 5.6 correct

4. 5.9
5. 4.7

Explanation:

Msci 190402
00510.0 points

The ionization constants for an imaginary weak acid $\mathrm{H}_{3} \mathrm{~A}$ are $K_{1}=1.0 \times 10^{-3}, K_{2}=$ 1.0×10^{-7}, and $K_{3}=1.0 \times 10^{-11}$. Would a water solution of $\mathrm{NaH}_{2} \mathrm{~A}$ be acidic, basic, or neutral? Hint: Write the chemical equation and the equilibrium constant for the two possible reactions.

1. neutral
2. acidic because of further ionization of $\mathrm{H}_{2} \mathrm{~A}^{-}$correct
3. acidic because of the hydrolysis of $\mathrm{H}_{2} \mathrm{~A}^{-}$
4. basic because of the further ionization of $\mathrm{H}_{2} \mathrm{~A}^{-}$
5. basic because of the hydrolysis of $\mathrm{H}_{2} \mathrm{~A}^{-}$ Explanation:

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{~A}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HA}^{2-} \\
K_{2}=10^{-7} \\
\mathrm{H}_{2} \mathrm{~A}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{~A}+\mathrm{OH}^{-} \\
K_{\mathrm{b} 3}=\frac{K_{\mathrm{w}}}{K_{\mathrm{a} 1}}=\frac{10^{-14}}{10^{-2}}=10^{-11} \\
\text { PH } 1077 \mathbf{7 8} \\
\mathbf{0 0 6} 10.0 \text { points } \\
\text { What is the } \mathrm{pH} \text { of } 0.15 \mathrm{M} \mathrm{NaHSO}(\mathrm{Na}) \text { if } \\
K_{\mathrm{a} 1}=0.015, K_{\mathrm{a} 2}=1.2 \times 10^{-7}, \mathrm{p}_{\mathrm{a} 1}=1.81 \\
\text { and } \mathrm{p} K_{\mathrm{a} 2}=6.91 ?
\end{gathered}
$$

1. 3.02
2. 7.82
3. 4.36 correct
4. None of these
5. 6.92
6. @@@

Explanation:
$\mathrm{p} K_{\mathrm{a} 1}=1.81 \quad \mathrm{p} K_{\mathrm{a} 2}=6.91$
$M=0.15 \mathrm{M}$
This is a salt of a polyprotic acid. The salt will dissociate into solution. The cation is an extremely weak acid and does not affect the equilibrium. The anion can then either protonate or deprotonate; the extent to which these processes occur is determined by the relative values of $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$. The pH is

$$
\begin{aligned}
\mathrm{pH} & =\frac{1}{2}\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{a} 2}\right) \\
& =\frac{1}{2}(1.81+6.91) \\
& =4.36 .
\end{aligned}
$$

Note the pH of a salt solution of a polyprotic acid is independent of the concentration of the salt as long as it is not extremely dilute.

00710.0 points

What is the molar solubility of CaF_{2} ? $\left(K_{\mathrm{sp}}=\right.$ 3.9×10^{-11}.)

1. 3.9×10^{-11}
2. 3.4×10^{-4}
3. 6.2×10^{-6}
4. 4.4×10^{-6}
5. 2.1×10^{-4} correct

Explanation:

$$
\begin{aligned}
\mathrm{CaF}_{2} \rightleftharpoons & \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-} \\
K_{\mathrm{sp}} & =\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2} \\
3.9 \times 10^{-11} & =(x)(2 x)^{2} \\
& =4 x^{3} \\
x & =2.1 \times 10^{-4}
\end{aligned}
$$

Msci 180890

00810.0 points

A buffer (pH 9.25) was prepared by mixing 1.00 mole of ammonia and 1.00 mole of ammonium chloride to form an aqueous solution with a total volume of 1.00 L . To 500 mL of this solution was added 50.0 mL of 1.00 M HCl . What is the pH of this solution?

1. 9.17 correct
2. 9.49
3. 9.83
4. 8.97
5. 8.71

Explanation:

$\left[\mathrm{NH}_{3}\right]=1 \mathrm{M}$
$\left[\mathrm{NH}_{4}^{+}\right]=1 \mathrm{M}$
$[\mathrm{HCl}]=1 \mathrm{M}$
$\mathrm{pH}_{\text {ini }}=9.25$
$n_{\mathrm{Cl}^{-}}=500 \times 1.0=500 \mathrm{mmol}$ $\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$

ini	500	50	500	500
Δ	-50	-50	50	50
fin	450	0	550	550

Cl^{-}are spectator ion. $\mathrm{NH}_{4}^{+} / \mathrm{NH}_{3}$ is a buffer system. Since $\left[\mathrm{NH}_{3}\right]=\left[\mathrm{NH}_{4}^{+}\right]$in the original buffer $\mathrm{p} K_{\mathrm{a}}=\mathrm{pH}_{\mathrm{ini}}=9.25$, and

$$
\begin{aligned}
\mathrm{pH}_{\text {fin }} & =\mathrm{p} K_{\mathrm{a}}+\log \left(\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}\right) \\
& =-\log \left(\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}\right)+\log \left(\frac{450}{550}\right) \\
& =9.16812
\end{aligned}
$$

