This print-out should have 8 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

ChemPrin3e T11 28 001 10.0 points

Which of the following mixtures gives a buffer with a pH less than 7.0? For acetic acid, $K_{\rm a} = 1.8 \times 10^{-5}$ and for NH₃, $K_{\rm b} = 1.8 \times 10^{-5}$.

1. 10 mL of 0.1 M aqueous acetic acid + 10 mL of 0.1 M NaOH(aq)

2. 10 mL of 0.1 M $NH_3(aq) + 10$ mL of 0.1 M HCl(aq)

3. 10 mL of 0.1 M aqueous acetic acid + 5.0 mL of 0.1 M NaOH(aq) **correct**

4. 10 mL of 0.1 M $NH_3(aq) + 5.0$ mL of 0.1 M HCl(aq)

5. 10 mL of 0.1 M aqueous acetic acid + 10 mL of 0.1 M $NH_3(aq)$

Explanation:

Sparks buffer 003

002 10.0 points What is the pH of a solution made to be 0.5 M in HCN and 0.3 M in NaCN? $K_{\rm a}$ for HCN is 4.0×10^{-10} .

1. 9.17 **correct**

- **2.** 6.67
- **3.** 6.67×10^{-10}
- **4.** 9.6

5. 4.83

6. 7.33

Explanation:

A 100 mL portion of 0.3 M acetic acid is being titrated with 0.2 M NaOH solution. What is the pH of the solution after 100 mL of the NaOH solution has been added? The ionization constant of acetic acid is 1.8×10^{-5} .

1. pH = 4

2. pH = 4.32

3. pH = 5.27

4. pH = 5.05 correct

5. pH = 4.71

Explanation:

$$\begin{split} V_{\rm CH_3COOH} &= 100 \ {\rm mL} & [\rm CH_3COOH] = 0.3 \ {\rm M} \\ V_{\rm NaOH} &= 100 \ {\rm mL} & [\rm NaOH] = 0.2 \ {\rm M} \\ K_{\rm a} &= 1.8 \times 10^{-5} \\ {\rm For \ CH_3COOH, \ (0.3 \ {\rm M})(0.1 \ {\rm L}) = 0.03 \ {\rm mol} \\ {\rm For \ NaOH, \ (0.2 \ {\rm M})(0.1 \ {\rm L}) = 0.02 \ {\rm mol} } \end{split}$$

CH ₃ COOH +	- NaOH	$\rightarrow \rm NaCH_3COO$
		+ H ₂ O
$0.03 \mathrm{\ mol}$	0.02 mol	$0 \ \mathrm{mol}$
-0.02 mol	-0.02 mol	+0.02 mol
0.01 mol	0 mol	0.02 mol

$$\begin{array}{cccc} CH_{3}COOH \rightarrow & CH_{3}COO^{-} + & H^{+} \\ 0.01 \ mol & & 0.02 \ mol \\ \hline \\ 0.2 \ L & & 0.2 \ L \\ \hline \\ \hline 0.05 \ M & & 0.1 \ M & x \\ \hline \\ Thus \end{array}$$

$$K_{a} = \frac{\left[CH_{3}COO^{-}\right]\left[H^{+}\right]}{\left[CH_{3}COOH\right]}$$

$$1.8 \times 10^{-5} = \frac{0.1 x}{0.05}$$

$$x = \left[H^{+}\right] = \frac{K_{a}\left[CH_{3}COOH\right]}{\left[CH_{3}COO^{-}\right]}$$

$$= \frac{\left(1.8 \times 10^{-5}\right)(0.05)}{0.1}$$

$$= 9 \times 10^{-6}$$

Thus

$$pH = -\log [H^+] = 5.04576$$

Msci 19 0751

5. 4.7

Explanation:

Msci 19 0402 005 10.0 points

The ionization constants for an imaginary weak acid H₃A are $K_1 = 1.0 \times 10^{-3}$, $K_2 = 1.0 \times 10^{-7}$, and $K_3 = 1.0 \times 10^{-11}$. Would a water solution of NaH₂A be acidic, basic, or neutral? *Hint:* Write the chemical equation and the equilibrium constant for the two possible reactions.

1. neutral

2. acidic because of further ionization of H_2A^- correct

3. acidic because of the hydrolysis of H_2A^-

4. basic because of the further ionization of $\rm H_2A^-$

5. basic because of the hydrolysis of H₂A⁻ Explanation:

$$H_2A^- \rightleftharpoons H^+ + HA^{2-}$$

 $K_2 = 10^{-7}$

$$H_2A^- + H_2O \rightleftharpoons H_3A + OH^-$$

 $K_{b3} = \frac{K_w}{K_{a1}} = \frac{10^{-14}}{10^{-2}} = 10^{-11}$

PH 10 77 78

006 10.0 points What is the pH of 0.15 M NaHSO₃(aq) if $K_{a1} = 0.015, K_{a2} = 1.2 \times 10^{-7}, pK_{a1} = 1.81$ and $pK_{a2} = 6.91$?

1. 3.02

2. 7.82

3. 4.36 **correct**

- 4. None of these
- **5.** 6.92

6. @@@

Explanation:

 ${\rm p}K_{\rm a1} = 1.81 \\ M = 0.15 \; {\rm M}$

 $\mathbf{p}K_{\mathrm{a2}}=6.91$

This is a salt of a polyprotic acid. The salt will dissociate into solution. The cation is an extremely weak acid and does not affect the equilibrium. The anion can then either protonate or deprotonate; the extent to which these processes occur is determined by the relative values of pK_{a1} and pK_{a2} . The pH is

$$pH = \frac{1}{2}(pK_{a1} + pK_{a2})$$
$$= \frac{1}{2}(1.81 + 6.91)$$
$$= 4.36.$$

Note the pH of a salt solution of a polyprotic acid is independent of the concentration of the salt as long as it is not extremely dilute. 007 10.0 points What is the molar solubility of CaF₂? ($K_{\rm sp} = 3.9 \times 10^{-11}$.)

1. 3.9×10^{-11}

2. 3.4×10^{-4}

3. 6.2×10^{-6}

4. 4.4×10^{-6}

5. 2.1×10^{-4} correct

Explanation:

$$CaF_2 \rightleftharpoons Ca^{2+} + 2F^-$$

 $K_{sp} = [Ca^{2+}][F^-]^2$
 $3.9 \times 10^{-11} = (x) (2x)^2$
 $= 4x^3$
 $x = 2.1 \times 10^{-4}$

$$\begin{array}{rrrr} n_{\rm Cl^-} &= 500 \times 1.0 = 500 \ \rm mmol \\ & \rm NH_3 + HCl \rightarrow & \rm NH_4^+ + Cl^- \\ \rm ini & 500 \quad 50 \quad 500 \quad 500 \\ \Delta & -50 \quad -50 \quad 50 \quad 50 \\ \rm fin \quad 450 \quad 0 \quad 550 \quad 550 \end{array}$$

 Cl^- are spectator ion. $\text{NH}_4^+/\text{NH}_3$ is a buffer system. Since $[\text{NH}_3] = [\text{NH}_4^+]$ in the original buffer $pK_a = pH_{\text{ini}} = 9.25$, and

$$pH_{fin} = pK_{a} + \log\left(\frac{[NH_{3}]}{[NH_{4}^{+}]}\right)$$
$$= -\log\left(\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}\right) + \log\left(\frac{450}{550}\right)$$
$$= 9.16812$$

Msci 18 0890

008 10.0 points

A buffer (pH 9.25) was prepared by mixing 1.00 mole of ammonia and 1.00 mole of ammonium chloride to form an aqueous solution with a total volume of 1.00 L. To 500 mL of this solution was added 50.0 mL of 1.00 M HCl. What is the pH of this solution?

1. 9.17 **correct**

2. 9.49

3. 9.83

4. 8.97

5. 8.71

Explanation:

 $[NH_3] = 1 M$ [HCl] = 1 M $[NH_4^+] = 1 M$ $pH_{ini} = 9.25$

Initial condition (ini): $n_{\rm NH_3} = 500 \times 1.0 = 500 \text{ mmol}$ $n_{\rm NH_4^+} = 500 \times 1.0 = 500 \text{ mmol}$ $n_{\rm HCl} = 50 \times 1.0 = 50 \text{ mmol}$