This print-out should have 7 questions. Multiple-choice questions may continue on the next column or page - find all choices before answering.

> | Mlib 071133 | |
| :---: | :---: |
| $001 \quad 10.0$ points | |

What would be the expression for K_{c} for the reaction

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

at equilibrium?

1. $\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}$
2. $[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}$
3. $\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}$
4. $\frac{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}$ correct
5. $\frac{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{NH}_{3}\right]^{4}}$

Explanation:

To write K_{c} for a balanced chemical reaction, multiply the concentrations of the products divided by the same (multiply the concentrations) for the reactants, each raised to its coefficient in the reaction.

Msci 170517			
$002 \quad 10.0$ points			

A mixture of $\mathrm{PCl}_{5}(\mathrm{~g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ is placed into a closed container. At equilibrium it is found that $\left[\mathrm{PCl}_{5}\right]=0.75 \mathrm{M},\left[\mathrm{Cl}_{2}\right]=0.1 \mathrm{M}$ and $\left[\mathrm{PCl}_{3}\right]=0.09 \mathrm{M}$.

$$
\mathrm{PCl}_{5} \rightleftharpoons \mathrm{PCl}_{3}+\mathrm{Cl}_{2}
$$

What is the value of K_{c} for the reaction?

1. 0.012 correct
2. 0.006
3. 3
4. 0.024
5. 0.036

Explanation:

$\left[\mathrm{PCl}_{5}\right]=0.75 \mathrm{M}$
$\left[\mathrm{Cl}_{2}\right]=0.1 \mathrm{M}$
$\left[\mathrm{PCl}_{3}\right]=0.09 \mathrm{M}$

$$
\begin{aligned}
K_{\mathrm{C}} & =\frac{\left[\mathrm{Cl}_{2}\right]\left[\mathrm{PCl}_{3}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{(0.1 \mathrm{M})(0.09 \mathrm{M})}{0.75 \mathrm{M}} \\
& =0.012 \mathrm{M}
\end{aligned}
$$

Msci 170614
 00310.0 points

A 10.0 L vessel contains 0.0015 mole CO_{2} and 0.10 mole CO. If a small amount of carbon is added to this vessel and the temperature is raised to $1000^{\circ} \mathrm{C}$

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})
$$

will more CO form? The value of K_{c} for this reaction is 1.17 at $1000^{\circ} \mathrm{C}$. Assume that the volume of the gas in the vessel is 10.0 L .

1. Yes, the rate of the forward reaction will increase to produce more CO. correct
2. No, the rate of the reverse reaction will increase to produce more CO_{2}.
3. Unable to determine this from the data provided.

Explanation:

$[\mathrm{CO}]=\frac{0.1 \mathrm{~mol}}{10 \mathrm{~L}} \quad\left[\mathrm{CO}_{2}\right]=\frac{0.0015 \mathrm{~mol}}{10 \mathrm{~L}}$
Carbon, being a solid, has no effect on equilibrium.

$$
[\mathrm{Q}]=\frac{[\mathrm{CO}]^{2}}{\left[\mathrm{CO}_{2}\right]}=\frac{\left(\frac{0.1}{10.0} \mathrm{M}\right)^{2}}{\left(\frac{0.0015}{10.0} \mathrm{M}\right)}
$$

$$
=0.666667<K_{\mathrm{c}}=1.17
$$

Therefore equilibrium will shift to the right.

Msci 170637	
004	10.0 points

The reaction

$$
\mathrm{Br}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{BrF}_{3}(\mathrm{~g})
$$

is exothermic in the forward direction. An increase in the partial pressure of BrF_{3} in this reaction at equilibrium would be favored by a (higher, lower) total pressure and by a (higher, lower) temperature.

1. higher; lower correct
2. higher; higher
3. lower; higher
4. lower; lower

Explanation:

LeChatelier's Principle states that if a change in conditions occurs to a system at equilibrium, the system responds to relieve the stress and reach a new state of equilibrium. There is more gas on the reactant side of the reaction equation, so adding pressure will cause the reaction to move to the right. The reaction is exothermic; it releases heat. Heat is a product of the reaction. Decreasing temperature will cause the reaction to move to the right.

Msci 171101

00510.0 points

Calculate the equilibrium constant at $25^{\circ} \mathrm{C}$ for a reaction for which $\Delta G^{0}=-3.45 \mathrm{kcal} / \mathrm{mol}$.

1. 339.157 correct
2. 3391.57
3. -339.157
4. 678.314
5. 169.578

Explanation:

$T=25^{\circ} \mathrm{C}+273=298 \mathrm{~K}$
$\Delta G^{0}=-3450 \mathrm{cal} / \mathrm{mol}$
At equilibrium

$$
\begin{aligned}
\Delta G^{0}= & -R T \ln K \\
-3450= & (-1.987 \mathrm{cal} / \mathrm{mol} \cdot \mathrm{~K}) \\
& \times(298 \mathrm{~K})(\ln K) \\
K= & 339.157
\end{aligned}
$$

ChemPrin3e T09 56
 $006 \quad 10.0$ points

$K_{\mathrm{c}}=0.100$ at a certain temperature for the reaction

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) .
$$

At equilibrium, $\left[\mathrm{PCl}_{5}\right]=2.00 \mathrm{M}$ and $\left[\mathrm{PCl}_{3}\right]=$ $\left[\mathrm{Cl}_{2}\right]=1.00 \mathrm{M}$. If suddenly $1.00 \mathrm{M} \mathrm{PCl}_{5}(\mathrm{~g})$, $\mathrm{PCl}_{3}(\mathrm{~g})$, and $\mathrm{Cl}_{2}(\mathrm{~g})$ are added, calculate the equilibrium concentration of $\mathrm{PCl}_{5}(\mathrm{~g})$.

1. 1.35 M

2. 4.35 M correct

3. 0.65 M
4. essentially zero
5. 2.35 M

Explanation:

ChemPrin3e T09 67
 00710.0 points

For the decomposition of ammonia to nitrogen and hydrogen, the equilibrium constant is 1.47×10^{-6} at 298 K . Calculate the temperature at which $K=0.01$. For this reaction, $\Delta H^{\circ}=92.38 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$.

1. 59 K
2. 241 K

3. 390 K correct

4. 117 K
5. 332 K
6. 468 K

Explanation:

Use the van't Hoff equation.
00810.0 points

Which of the following equilibrium reactions is NOT affected by changes in pressure?

1. $2 \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
2. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\ell) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
3. $2 \mathrm{BrCl}(\mathrm{g}) \rightarrow \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ correct
4. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
5. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\ell) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{O}_{2}(\mathrm{~g})$

Explanation:

