The rest of the Semester

All of Chemistry

Today

Groups I-IV

Principles of Chemistry II

Vanden Bou

Things everyone should know

Get to know the chemistry of the elements

How is each element found in nature

Reactions involving compounds with those elements

Practical uses of those compounds

Principles of Chemistry II

Hydrogen

How is each element found in nature

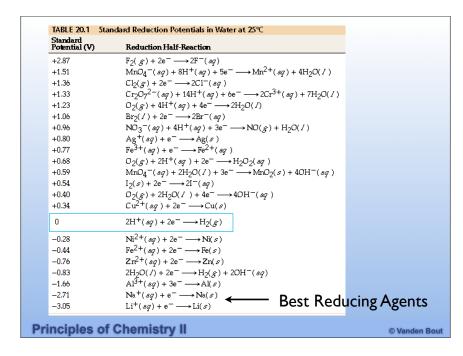
(its almost all in water and hydrocarbons) H₂ made from methane reforming with steam

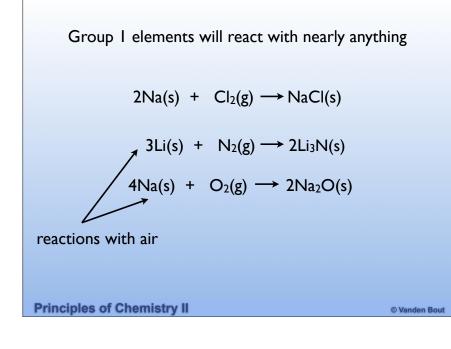
Reactions involving compounds with those elements H^+ oxidizing metals H_2 reducing compounds (like oxides)

Practical uses of those compounds

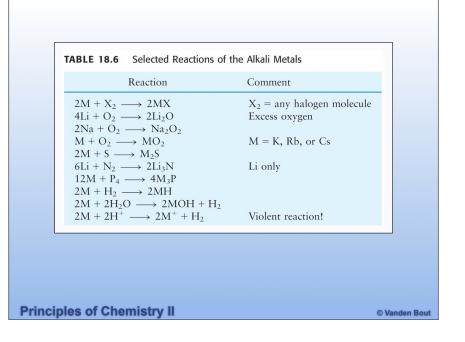
$$2H_2 + O_2 \longrightarrow 2H_2O$$

Principles of Chemistry II


© Vanden Bou


Group I metals Alkali Metals

All have a nS¹ electronic configuration
Very low ionization energy
Behave like a metal (easily oxidized)
From +1 ion always
low boiling and melting points
react violently with water (and most anything else)
from basic hydride and oxides


Principles of Chemistry II

$$2Na + 2H2O \longrightarrow 2Na^{+} + 2OH^{-} + H2(g)$$

Principles of Chemistry II

Hydrides and oxides are basic

$$Na_2O(s) + H_2O(l) \longrightarrow 2NaOH(aq)$$

Nucleophilic (wants nuclei) Electron rich

$$NaH(s) + H2O(l)$$
 2NaOH(aq) + H₂(g)

H in -I oxidation state (can deprotonate nearly anything)

Principles of Chemistry II

© Vanden Bou

Where are they?

Everywhere as ions

Na⁺, K⁺ are everywhere (Li⁺ because it has such a large charge density often makes insoluble compounds) Rb, Cs, Fr very little in the universe

Na⁺ and K⁺ critical in biochemistry

Principles of Chemistry II

@ Vandon Box

ABLE 18.3	Sources and Methods of Preparation of the Pure Alkali Metals				
Element	Source Method of Preparation				
Lithium	Silicate minerals such as spodumene, LiAl(Si ₂ O ₆)	Electrolysis of molten LiCl			
Sodium	NaCl	Electrolysis of molten NaCl			
Potassium	KCl	Electrolysis of molten KCl			
Rubidium	Impurity in lepidolite, Li ₂ (F,OH) ₂ Al ₂ (SiO ₃) ₃	Reduction of RbOH with Mg and H ₂			
Cesium	Pollucite (Cs ₄ Al ₄ Si ₉ O ₂₆ · H ₂ O) and an impurity in lepidolite (Fig. 18.4)	Reduction of CsOH with Mg and H_2			

Principles of Chemistry II © Vanden Box

Practical Uses

Na⁺ and K⁺ needed to keep your body functioning

Not to mention tasty

$$Li^+ + e^- \longrightarrow Li \quad E = -3V \text{ (most negative)}$$

Make a great battery (high voltage)

Principles of Chemistry II

Group II metals Alkali Earth Metals

All have a nS² electronic configuration
Very low ionization energy
Behave like a metal (easily oxidized)
From +2 ion always
react with water (and most anything else)

Principles of Chemistry II

© Vanden Bou

Difference compared to group I

+2 ions have a very high charge density Often they make insoluble compounds

You'll find them as oxides, phosphates, sulfates, and carbonates

Sometimes mixed metal compounds Be₃Al₂Si₆O₁₈ (Beryl)

Emeralds = Beryl + Cr^{3+} ions

Principles of Chemistry II

O Venden De

Which is easier to oxidize?

- A. Magnesium
- B. Carbon
- C. They are the same

Principles of Chemistry II

Vanden Bou

Common Reactions

$$Ca + 2H_2O \longrightarrow Ca^{2+} + 2OH^{-} + H_2$$

TABLE 18.8 Selected Reactions of the Group 2A Elements

TABLE 18.8 Selected Reactions of the Group 2A Elements					
Rea	ction	Comment			
$\begin{array}{c} M+X_2 \longrightarrow MX_2 \\ 2M+O_2 \longrightarrow 2MO \\ M+S \longrightarrow MS \\ 3M+N_2 \longrightarrow M_3N_1 \\ 6M+P_4 \longrightarrow 2M_3P_2 \\ M+H_2 \longrightarrow MH_2 \end{array}$	2	X_2 = any halogen molecule Ba gives BaO_2 as well High temperatures High temperatures $M = Ca$, Sr , or Ba ; high temp-			
$M + 2H_2O \longrightarrow M(0)$ $M + 2H^+ \longrightarrow M^{2+}$ $Be + 2OH^- + 2H_2O$	+ H ₂	eratures; Mg at high pressure $M = Ca$, Sr, or Ba			

Principles of Chemistry II

Oxides are highly reactive Very Basic

$$CaO + H_2O \longrightarrow Ca^{2+} + 2OH^{-}$$

Key component in cement

$$CaCO_3$$
 + heat \longrightarrow CaO + CO₂

Principles of Chemistry II

Vanden Bou

Ca²⁺ has a very high charge density
Make strong compounds
Not a surprise to find it in bones, teeth, concrete...

Oddball Be makes some covalent compounds

All other are metallic

Principles of Chemistry II

@ Vandon Bou

Group III

TABLE 18.9 Selected Physical Properties, Sources, and Methods of Preparation for the Group 3A Elements

Element	Radius of M ³⁺ (pm)	Ionization Energy (kJ/mol)	\mathscr{C}° (V) for $M^{3+} + 3e^{-} \longrightarrow M$	Sources	Method of Preparation
Boron	20	798	-	Kernite, a form of borax (Na ₂ B ₄ O ₇ · 4H ₂ O)	Reduction by Mg or H ₂
Aluminum	50	581	-1.66	Bauxite (Al ₂ O ₃)	Electrolysis of Al ₂ O ₃ in molten Na ₃ AlF ₆
Gallium	62	577	-0.53	Traces in various minerals	Reduction with H ₂ or electrolysis
Indium	81	556	-0.34	Traces in various minerals	Reduction with H ₂ or electrolysis
Thallium	95	589	0.72	Traces in various minerals	Electrolysis

Found as oxides

$$Al_2O_3 + Cr^{3+} = ruby$$

 $Al_2O_3 + Ti = sapphire$

Principles of Chemistry II

Aluminum is a very useful metal Where does it come from?

All "Bauxite" to begin with A mix of aluminum, iron, and silicon oxides

"Bayer process" to purify to only Al_2O_3 (Alumina) (first dissolve in base only Al and Si compounds dissolve the lower the temp and Al_2O_3 is less soluble so it fall out first)

Then heat it up with Carbon to get $AI + CO_2$

Principles of Chemistry II

Boric Acid

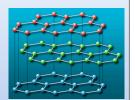
$$B(OH)_3 + H_2O \longrightarrow B(OH)_4^- + H^+$$

(toxic to many insects. Disrupts metabolism and its abrasive)

NaBH₄

Strong Reducing Agent

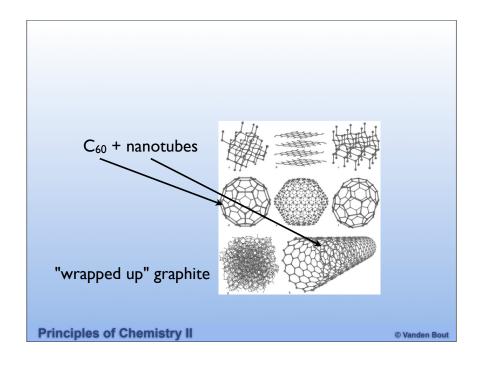
BH₄- ("excess electrons")


Principles of Chemistry II

© Vanden Bo

Group IV

Carbon Allotropes


Diamond All sp³ carbon Very strong tetrahedral network insulating

Graphite All sp² carbon in a plane other p orbital give in-plane pi bond delocalized pi electrons make graphite conductive plane can "slip" over each other = pencil

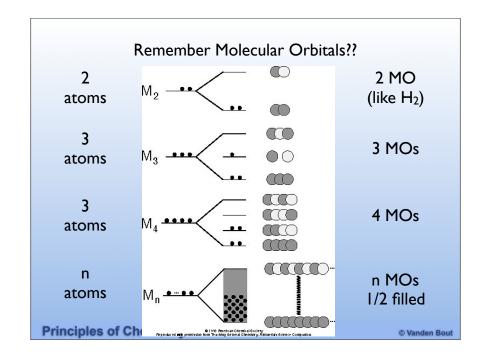
Principles of Chemistry II

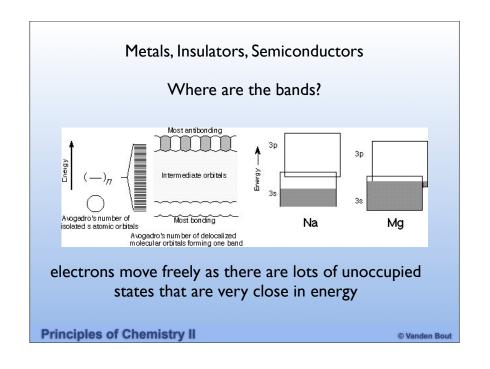
@ Vandon Ro

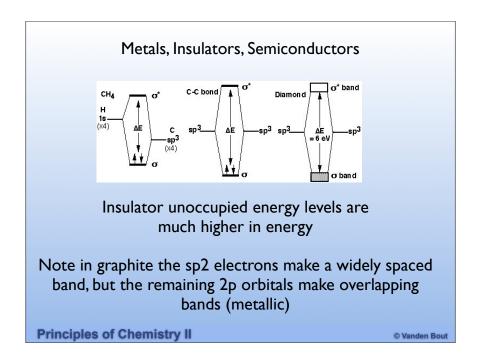
Carbon chemistry = Organic Chemistry

We'll have two whole lectures just on this

Principles of Chemistry II


The other major player in Group IV


Silicon


the basis of all computer chips

Metallic Bonding
"thinking of all the atoms as one big molecule"

Principles of Chemistry II

Valence band Semiconductor Metal o 1995 by the Division of Chenical Education, hc., American Chemical Society. Reproduced with permission from Solid-State Resources. Semiconductors, bands are close but there is a gap. Need thermal energy to move into unoccupied states

Why is Silicon semiconducting while Diamond is an insulator (same structure)

- A. Silicon is larger so their is less interaction between the atoms and a lower splitting between the levels
- B. Silicon is smaller so their is less interaction between the atoms and a lower splitting between the levels
- C. Silicon is larger so their is more interaction between the atoms and a greater splitting between the levels

Principles of Chemistry II

0 W----

How might you "add an electron" to silicon?

Or dopant (add or remove an electron)

- A. Substitute a P for a silicon atom in the solid
- B. Substitute a B for a silicon atom in the solid
- C. Substitue a C for a silicon atom in the solid

Group III will take an electron and "leave" a positive charge in the Si lattice
P-doping (P = positive)

Group V will "give an electron" and resulting in a negative charge in the Si lattice
N-doping (N = negative)

Principles of Chemistry II

Principles of Chemistry II

© Vanden Bout

Principles of Chemistry II

Last but not least

Silicone (rubber)

Back bone

...-Si-O-Si-O-Si-O-....

Silicon can form two more bonds

Add various organic molecules for different properties

household "caulk", silly putty,

Principles of Chemistry II

Vanden Bou

Group V,VI,VII

Four very important chemicals

Phophoric Acid (H₃PO₄) Ammonia (NH₃) Sulfuric Acid (H₂SO₄) Chlorine Gas (Cl₂)

Principles of Chemistry II

0 W--------

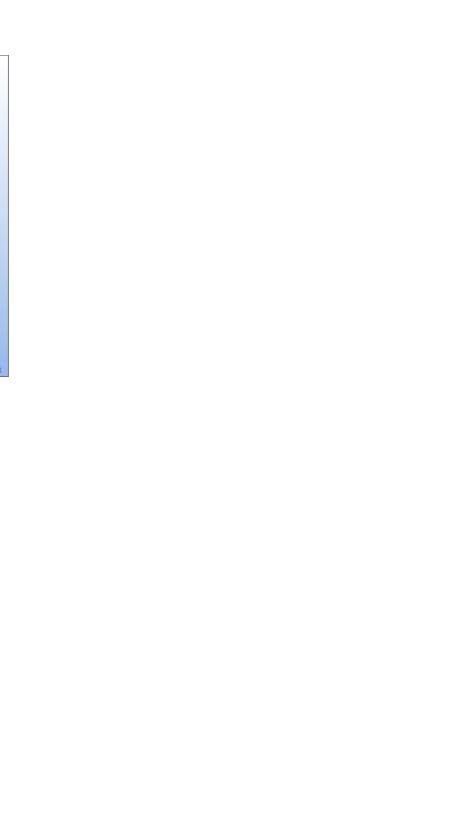
Sulfuric Acid

used for lots of things
Steel production
Phosphoric Acid Production
Recovery of Ammonia in Steel Production
Industrialized Nation = Nation with lots of Sulfuric Acid

PRODUCTION THOUSANDS OF TONS UNLESS OTHERWISE NOTED 1996 1997 Aluminum sulfate₀ 1,166 1,196 1,050 1,140 Ammoniac,d 17,169 17,924 17,195 17 869 17,403 17,923 17,891 17,337 16,806 Ammonium nitratee 7,819 7.981 8,280 8.568 8.489 8,498 8.604 9.079 7,630 7.498 2,391 11.757 Ammonium sulfater 2,243 2,432 2.584 2 647 2,662 2,702 2,787 2.599 2.868 Chlorine_a 11.572 12.079 12.187 12.395 12.460 12.922 12.841 13.353 13.131 3,610 4.570 4,659 4.718 Hydrochloric acidh 3.301 3.492 3.754 3.904 4.116 4.499 Hydrogen, bcf, 100%i,j 153 162 213 331 352 526 552 454 Nitric acid, 100%k 7,927 8,136 8,714 9,285 8,945 8,479 Nitrogen gas, bcf, 100%i. 770 Oxygen, bcf, 100% 470 515 547 605 630 743 676 685 Phosphoric acid, P2O5 12,109 12,826 11,515 12,792 13,134 13,159 13,891 13,708 13,143 Sodium chlorate 449 555 539 626 779 818 12,244 12,539 10,973 13,113 11 713 Sodium hydroxide 12 466 11 408 11 563 13 199 11 518 Sodium sulfatem 794 609 592 652 711 664 706 629 660 48,512 44,756 44,032 40,054 Sulfuric acid_n 43,466 44,524 39,839 44,813 47,519 47,770 47,929

Principles of Chemistry II

© Vanden Bo


Principles of Chemistry II

Fertilizer

Ammonia (N source) + Phosphoric Acid (P source)

Ammonia used to make Nitric Acid

Principles of Chemistry II

