



















Standard Reduction Potentials					
We write all standard potentials as reduction reactions					
2H ⁺ (aq) + 2e ⁻ > H ₂ (g)	$E^{\circ} = 0.0 V$ by definition				
Zn (s)> Zn ²⁺ (aq) + 2e ⁻	E° = +0.76V				
Zn ²⁺ (aq) + 2e ⁻ > Zn(s)	E° = -0.76V				
This is the standard reduction potential for Zn ²⁺ Zn(s)					
Principles of Chemistry II	© Vanden Bout				

Half-reaction	€° (V)	Half-reaction	€° (V)
			e (•)
$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	0.40
$Ag^{2+} + e^- \rightarrow Ag^+$	1.99	$Cu^{2+} + 2e^- \rightarrow Cu$	0.34
$Co^{3+} + e^- \rightarrow Co^{2+}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.27
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	1.78	$AgCl + e^- \rightarrow Ag + Cl^-$	0.22
$Ce^{4+} + e^- \rightarrow Ce^{3+}$	1.70	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	0.20
$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$Cu^{2+} + e^- \rightarrow Cu^+$	0.16
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$2H^+ + 2e^- \rightarrow H_2$	0.00
$IO_4^- + 2H^+ + 2e^- \rightarrow IO_3^- + H_2O$	1.60	$Fe^{3+} + 3e^- \rightarrow Fe^-$	-0.036
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51	$Pb^{2+} + 2e^- \rightarrow Pb$	-0.13
$Au^{3+} + 3e^- \rightarrow Au$	1.50	$Sn^{2+} + 2e^- \rightarrow Sn$	-0.14
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	1.33	$Cd^{2+} + 2e^- \rightarrow Cd$	-0.40
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Fe^{2+} + 2e^- \rightarrow Fe$	-0.44
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50
$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	1.20	$Cr^{3+} + 3e^- \rightarrow Cr$	-0.73
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
$AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	$2H_2O + 2e^- \rightarrow H_2 + 2OH$ $Mn^{2+} + 2e^- \rightarrow Mn$	-0.83 -1.18
$\text{NO}_4^- + 3e^- \rightarrow \text{NO} + 2\text{H}_2\text{O}$		$Al^{3+} + 3e^- \rightarrow Al$	
	0.96		-1.66
$ClO_2 + e^- \rightarrow ClO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23
$2Hg^{2+} + 2e^- \rightarrow Hg_2^{2+}$	0.91	$Mg^{2+} + 2e^- \rightarrow Mg$	-2.37
$Ag^+ + e^- \rightarrow Ag$	0.80	$La^{3+} + 3e^- \rightarrow La$	-2.37
$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	0.80	$Na^+ + e^- \rightarrow Na$	-2.71
$Fe^{3+} + e^- \rightarrow Fe^{2+}$	0.77	$Ca^{2+} + 2e^- \rightarrow Ca$	-2.76
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^- \rightarrow Ba$	-2.90
$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	0.56	$K^+ + e^- \rightarrow K$	-2.92
$I_2 + 2e^- \rightarrow 2I^-$	0.54	$Li^+ + e^- \rightarrow Li$	-3.05
$Cu^+ + e^- \rightarrow Cu$	0.52		

Standard Potential (V)	Reduction Half-Reaction	Easy to reduce
+2.87	$F_2(g) + 2e^- \longrightarrow 2F^-(sq)$	(Strongest
+1.51	$MnO_4^{-}(sq) + 8H^+(sq) + 5e^- \longrightarrow Mn^{2+}(sq) + 4H_2O(I)$	· •
+1.36	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	oxidizing
+1.33	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O(1)$	
+1.23	$O_2(g) + 4H^+(sq) + 4e^- \longrightarrow 2H_2O(I)$	agents)
+1.06	$Br_2(1) + 2e^- \longrightarrow 2Br^-(sq)$	č ,
+0.96	$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + H_2O(I)$	
+0.80	$Ag^+(sq) + e^- \longrightarrow Ag(s)$	
+0.77	$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	
+0.68	$O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$	
+0.59	$MnO_4^{-}(sq) + 2H_2O(I) + 3e^- \longrightarrow MnO_2(s) + 4OH^-(sq)$	
+0.54	$I_2(s) + 2e^- \longrightarrow 2I^-(sq)$	
+0.40	$O_2(g) + 2H_2O(I) + 4e^- \longrightarrow 4OH^-(sq)$	
+0.34	$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	
0	$2H^+(aq) + 2e^- \longrightarrow H_2(g)$	
-0.28	$Ni^{2+}(sq) + 2e^{-} \longrightarrow Ni(s)$	Easy to oviding
-0.44	$Fe^{2+}(sq) + 2e^{-} \longrightarrow Fe(s)$	Easy to oxidize
-0.76	$\operatorname{Zr}^{2+}(sq) + 2e^{-} \longrightarrow \operatorname{Zn}(s)$	(strongest
-0.83	$2H_2O(I) + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$	· •
-1.66	$Al^{3+}(sq) + 3e^{-} \longrightarrow Al(s)$	reducing
-2.71	$Na^+(sq) + e^- \longrightarrow Na(s)$	
-3.05	$Li^+(aq) + e^- \longrightarrow Li(s)$	agents)

	Given the following standard reduction potentials which is easier to oxidize?							
		$Zn^{2+} + 2e^{-}> Zn(s) E^{\circ} = -0.76$ Fe ²⁺ + 2e ⁻ > Fe(s) E ^o = -0.44						
	A.	Zn(s) ← the more negative the reduction potential the easier it is to oxidize						
	В.	Fe(s)						
	C.	they are the same						
L								
Principles of Chemistry II © Vanden Bout								

	ndard Reduction Potentials in Water at 25°C	
Standard Potential (V)	Reduction Half-Reaction	
+2.87	$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	
+1.51	$MnO_4^{-}(sq) + 8H^+(sq) + 5e^- \longrightarrow Mn^{2+}(sq) + 4H_2O(1)$	
+1.36	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	
+1.33	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{3+}(aq) + 7H_2O(1)$	
+1.23	$O_2(g) + 4H^+(sq) + 4e^- \longrightarrow 2H_2O(1)$	
+1.06	$Br_2(1) + 2e^- \longrightarrow 2Br^-(aq)$	
+0.96	$NO_3^-(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + H_2O(I)$	
+0.80	$Ag^+(sq) + e^- \longrightarrow Ag(s)$	
+0.77	$Fe^{3+}(sq) + e^{-} \longrightarrow Fe^{2+}(sq)$	
+0.68	$O_2(g) + 2H^+(aq) + 2e^- \longrightarrow H_2O_2(aq)$	
+0.59	$MnO_4^{-}(aq) + 2H_2O(I) + 3e^{-} \longrightarrow MnO_2(s) + 4OH^{-}(aq)$	
+0.54	$I_2(s) + 2e^- \longrightarrow 2I^-(sq)$	
+0.40	$O_2(\mathcal{G}) + 2H_2O(1) + 4e^- \longrightarrow 4OH^-(aq)$	
+0.34	$Cu^{2+}(sq) + 2e^{-} \longrightarrow Cu(s)$	
0	$2H^+(sq) + 2e^- \longrightarrow H_2(g)$	
-0.28	$Ni^{2+}(sq) + 2e^{-} \longrightarrow Ni(s)$	
-0.44	$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$	
-0.76	$Zr^{2+}(sq) + 2e^{-} \longrightarrow Zn(s)$	
-0.83	$2H_2O(I) + 2e^- \longrightarrow H_2(g) + 2OH^-(sq)$	
-1.66	$Al^{3+}(sq) + 3e^{-} \longrightarrow Al(s)$	
-2.71	$Na^+(sq) + e^- \longrightarrow Na(s)$	
-3.05	$\operatorname{Li}^+(sq) + e^- \longrightarrow \operatorname{Li}(s)$	
les of Chem	istry II	© Vanden Bout
of or orient	iou'y n	S vanden bou