Today

More Fun with Acids and Bases Things everyone should know something about

Quiz

Principles of Chemistry II

First some language for the quiz

Amphiprotic Acids

These are the species that are partially protonated in a polyprotic acid

 $\begin{array}{rl} H_{3}PO_{4} & H_{2}PO_{4}^{-} & \text{between } K_{a1} \text{ and } K_{a2} \\ & HPO_{4}^{2-} \text{ between } K_{a2} \text{ and } K_{a3} \end{array}$

Breathing Demo

Principles of Chemistry II

What is happening in the solution?

- A. CO₂ is dissolving and hydrolyzing making H₂CO₃
- B. O_2 is dissolving making excess OH^-
- C. N_2 is dissolving making the HNO₃
- D. the indicator dye is reacting with the N_2

The solution in getting acidic from the CO₂ in peoples breath

Reactions for this equilibrium

 $CO_2(g) \longleftrightarrow CO_2(aq)$

 $CO_2(aq) + H_2O(l) \longleftrightarrow H_2CO_3(aq)$

 $H_{2}CO_{3}(aq) \longleftrightarrow H^{+}(aq) + HCO_{3}^{-}(aq) \qquad PK_{a1} = 6.37$ $HCO_{3}^{-}(aq) \longleftrightarrow H^{+}(aq) + CO_{3}^{2-}(aq) \qquad PK_{a2} = 10.25$

When the pH is around 7 only K_{al} is relevant

Principles of Chemistry II

Who cares?

Rising CO₂ levels are making the oceans more and more acidic (they are still all slightly basic)

Previously lots of CO_3^{2-} species (the other end of the equilibrium)

Adding CO₂ slowly shifts equilibrium to the acid end

More fun with carbonates

Principles of Chemistry II

What is happening?

Adding an acid to the HCO₃⁻

- A. makes H_2CO_3 which is exothermic and causes the water to boil
- B. makes H_2CO_3 which forms CO_2
- C. makes CO_3^{2-} which is exothermic and causes the water to boil
- D. makes H_2CO_3 which forms in soluble $Na_2(CO_2)_3$

Increasing the H⁺ concentration protonates the HCO₃⁻ making H₂CO₃ which decomposes into H₂O and CO₂

Why does it work with a weak acid?

- A. the pK_a of acetic acid is greater than the pK_{a1} for H_2CO_3
- B. the pK_a of acetic acid is smaller than the pK_{a1} for H_2CO_3
- C. the pK_a of acetic acid is equal than the pK_{a1} for H_2CO_3

H_2CO_3 is very weak base $pK_{a1} = 6.37$ Acetic Acid is a stronger weak acid $pK_a = 4.75$

Principles of Chemistry II

 $K_w = K_a K_b = 10^{-14} (25^{\circ}C)$ $[H^+] = (K_a C_{HA})^{0.5}$ $[OH^{-}] = (K_b C_B)^{0.5}$ $[H^+] = (K_{a1}K_{a2})^{0.5}$ $[OH^{-}] = (K_{b1}K_{b2})^{0.5}$ $[H^+] = C_A$ $[OH^-] = C_B$ $[H^+] = K_A(C_a/C_b)$ $[OH^{-}] = K_B(C_b/C_a)$ $pK_a = logK_a$ $pOH = log[OH^{-}]$ $pH + pOH = 14 (25^{\circ}C)$ $pH = log[H^+]$