All of this is intended to be done without the aid of a calculator. All of the calculations are designed such that approximating should be straight-forward and produce a correct result.

1. Based on the physical constants involved, which colligative property has the greatest magnitude for a solution of a given concentration? Which can't be compared in this way? Why?

2. Which colligative properties have a linear concentration dependence? Write their equations.

3. Rank the following aqueous solutions in terms of increasing boiling point: 3 m sugar, 2 m NaCl, 0.5 m Mg(OH)₂, 5 m AlN, 1 m urea.

4. Assuming a cell wall can withstand an osmotic pressure of 1 atmosphere and the concentration of Na^+ in a cell is 50 mM, approximate the [Na^+] outside the cell that would cause lysis.

5. If you dissolved 28 grams of NaCl in 90 grams of pure H_20 hot enough to have a vapor pressure of 30 torr, what will the new vapor pressure be?

6. Assuming standard conditions and a $K_f = 0.2 \text{ K} \cdot m^{-1}$ and a $K_b = 0.5 \text{ K} \cdot m^{-1}$ for water, what would be the freezing point of a solution that boiled at 375.5 K? Express your answer in both K and °C.

7. Based on the question above and assuming 1 kg of water, how many moles of NaCl would be needed to produce this effect? What about sugar?

8. Based on you understanding of boiling point elevation, why **doesn't** salting water help food to cook faster?

9. Vapor pressure is often described as a "surface phenomenon." Define this term in your own words to the best of your ability.

10. Raoult's can be used to calculate the decrease in vapor pressure when a non-volatile substance (like salt) is dissolved in a volatile substance (like water). Explain this phenomenon.

11. Write a mass action quotient (aka mass action expression) for the general equation below: aA + bB -> cC + dD

12. What sort of mathematical relationship exists between ΔG and K? Which of these terms should have a wider range of possible values?

13. What is the difference between Q and K?

14. What can you for certain about ΔG when K is less than 1, equal to 1 or greater than 1?

15. Based on your answer to question 14, what does the value of K tell you about the spontaneity of a reaction?

16. If a given reaction has K = 10, and presently has a Q = 5, what must happen in order for the reaction to reach equilibrium?

17. Based on your understanding of reaction stoichiometry, complete the RICE diagram below by filling in the blank regions.

R eaction	CH ₄ (g) +	2 O ₂ (g)>	CO ₂ (g) +	2 H ₂ O(g)
I nitial	10 moles	19 moles		
C hange				
E quilibrium	1 mol		10 moles	25 moles

18. Write a mass action quotient and determine K for the reaction in question 17. $K = [CO2] \cdot [H2O]^2 / [CH4] \cdot [O2]^2 = 10 \cdot 25^2 / 1 \cdot 1^2 = 6,250$

19. If the equilibrium established in question 17 were disturbed by the addition of 90 moles of CO_2 , what would the value of Q then be? Fill in a new RICE diagram, using X for unknown values.

Reaction $CH_4(g) + 2O_2(g) - --- > CO_2(g) + 2H_2O(g)$ InitialChangeEquilibrium

20. How will the system respond to the stress in question 19 in order to re-establish equilibrium?