Spring 2008 CH 302 Worksheet 3

Below are listed various reactions, stresses, and reaction components. Indicate how the amount of the indicated component changes when the stress is applied.

	Reaction	Stress	Component
1.	$3 H_2(g) + N_2(g) \leftrightarrow 2 NH_3(g)$	Addition of N ₂ gas	H ₂
2.	$\mathrm{CH_{3}OH}\left(g\right)+2\ \mathrm{O_{2}}\left(g\right)\leftrightarrow\mathrm{CO_{2}}\left(g\right)+2\ \mathrm{H_{2}O}\left(g\right)$	Addition of heat	CH ₃ OH
3.	$\mathrm{CH_{3}OH}\left(g\right) + \mathrm{H_{2}}\left(g\right) \leftrightarrow \mathrm{CH_{4}}\left(g\right) + \mathrm{H_{2}O}\left(l\right)$	Addition of pressure	CH ₃ OH
4.	$N_{2}(g) + O_{2}(g) \leftrightarrow 2 \text{ NO}(g)$	Reduction of pressure	O_2

Give the equation for K_c for the equations given in problems 5-8.

5. $2 H_2(g) + 2 O_2(g) \leftrightarrow 2 H_2O(g)$

- 6. HCl (aq) + H₂O (l) \leftrightarrow H₃O⁺ (aq) + Cl⁻ (aq)
- 7. NaCl (s) \leftrightarrow Na⁺ (aq) + Cl⁻ (aq)
- 8. $C_8H_{18}(g) + 25/2 O_2(g) \leftrightarrow 8 CO_2(g) + 9 H_2O(g)$
- 9. Consider the following reaction at 25°C:

 $H_2 + I_2 \leftrightarrow 2 \text{ HI}$ The reaction mixture is initially prepared with $C_{H2} = 0.1$, $C_{I2} = 0.1$, $C_{HI} = 0.5$. What is Q for this initial reaction mixture?

- 10. Which direction will the reaction in number 7 shift?
- 11. For the reaction

$$N_2(g) + 3 H_2(g) \leftrightarrow 2 NH_3(g)$$

the equilibrium constant with respect to concentration, $K_c = 3.8$. Calculate K_p at 298 K, the equilibrium constant with respect to pressure in atm. (Note: This hasn't been covered in class yet and won't be on Tuesday's quiz.)

12. For the reaction

 $NH_3 (g) + HCl (g) \leftrightarrow NH_4Cl (s)$ $\Delta H = -176 \text{ kJ/mol and } \Delta S = -305 \text{ J/mol K}. What is K for this reaction a 300 K? At 600 K?$

13. Calculate ΔG for the formation of ammonia at 298 K, given K_c = 3.8.

14. Assume that at some temperature, the reaction given below has an equilibrium constant K_p of 7.5. $C_6H_{12}O_6$, O_2 , CO_2 , and H_2O are places in a reaction vessel, each with an initial concentration of 1 atm. What are the equilibrium pressures?

 $C_6H_{12}O_6(g) + 6 O_2(g) \leftrightarrow 6 CO_2(g) + 6 H_2O(g)$

- a. $P_{C6H12O6} = 1.017$, $P_{O2} = 1.108$, $P_{CO2} = 0.892$, $P_{H2O} = 0.891$
- b. $P_{C6H12O6} = 0.898$, $P_{O2} = 0.387$, $P_{CO2} = 1.613$, $P_{H2O} = 1.613$
- c. $P_{C6H12O6} = 0.981$, $P_{O2} = 0.887$, $P_{CO2} = 1.112$, $P_{H2O} = 1.112$
- d. $P_{C6H12O6} = 1.465$, $P_{O2} = 1.465$, $P_{CO2} = 0.535$, $P_{H2O} = 0.535$
- 15. Write an expression for K_p for the reaction in problem 14 above, in terms of x = the magnitude of the change in pressure of $C_6H_{12}O_6$.
- 16. Assume that the reaction below has an equilibrium constant of 105 at some temperature. If you start out with 1 M CO₂ and 1 M H₂ in 3 kg of water, what is the equilibrium concentration of CO? CO (aq) + H₂O (l) ↔ CO₂ (aq) + H₂ (aq)
- 17. For the same reaction as in number 14, imagine you have some mixture of CO, CO₂, and H₂ in water. You know that initially $C_{CO} = 0.0025$ M and $C_{H2} = 0.5$ M. The equilibrium concentration of CO₂ ends up being 0.005. What are the initial and final concentrations of CO in this reaction?
- 18. One mole of acetic acid is dissolved in one liter of water, following the reaction below. K for this process, known as the "acid dissociation constant" for acetic acid, is about 1.8×10^{-5} . Given that the pH of a solution is defined by

 $pH = -log_{10}([H_3O^+])$, what is the pH of this solution at equilibrium?

 $HC_{2}H_{3}O_{2} (aq) + H_{2}O (l) \leftrightarrow C_{2}H_{3}O_{2}^{-}(aq) + H_{3}O^{+} (aq)$

- 19. Imagine some reaction A ↔ A*, which converts some species A between two forms. The reaction takes place in solution. If 1 mole of each of A and A* is placed in 1 L of water, and K for the reaction as written is 1.5, what is the equilibrium concentration of A*?
- 20. Once the reaction in problem 19 has reached equilibrium, 90% of the A* is removed from the mixture, and equilibrium is reestablished. What is the new concentration of A*?