LECTURE 20. THERMODYNAMIC OVERVIEW—A QUALITATIVE APPROACH

Today's lecture is a general overview of thermodynamics from a qualitative perspective. To really be able to understand thermo, you need to look at a chemical reaction and talk about it in the context of relative changes in state functions. The lecture actually parallels a hand you can download called, "Thoughts on Thermodynamics." If you can actually learn what is on this handout, and be able to explain it unassisted to a classmate, you will do well.

How to Know if a Reaction Happens

First, one of the important consequences of thermodynamics is the ability to explain whether a reaction occurs or not. Note that for every spontaneous reaction, there is a reverse non-spontaneous reaction and it would be nice to look at a reaction and tell whether it is going to happen as written or as the reverse. For example:

 $2H_2 + O_2 \rightleftharpoons 2H_2O \leftarrow$ exploding balloon is spontaneous $2H_2O \rightleftharpoons 2H_2 + O_2 \leftarrow$ water becomes H_2 , O_2 is not spontaneous

The state function that determines spontaneity is free energy, ΔG :

So when you look at a reaction, if you know it occurs from experience, you know it has $\equiv \Delta G = \bigcirc$.

Example. Consider AgNO₃ + NaCl \rightarrow AgCl + Na⁺ + NO⁻₃

You know from solubility rules that AgCl is insoluble and the reaction shifts to the right, so you know that for this reaction, ΔG is \bigcirc

Signs and thermo—Be the System

So what is the source of this idea about thermodynamic signs? Why was $\Delta G = \bigcirc$ for a spontaneous reaction defined as spontaneous. Is it arbitrary? NO.

How sign convention happens: "Be the System"

Sign convention views the assignment of (+) and (-) for thermo processes on the basis of whether the system gains or loses

If the system gains, the sign is (+) If the system loses, the sign is (-)

This **"Be the System"** idea can be hard because we are the surroundings and like to think we are what matters. But in thermo, it is the system.

Example: A Fire Burns Down a House—Is the process exothermic or endothermic. Is work done on this system or the surroundings?

Exothermic: (-), heat evolves, the wood of the house gets cold, i.e. the strong wood bonds become weak bonds $CO_2 + H_2O$ bonds.

Work Done on the Surroundings: (-), gas evolves, wood becomes $CO_2 + H_2O$. A bomb is formed as the volume of the house expands.

More thoughts on work and signs

Note: $w = -P\Delta V = -\Delta nRT$

Why is the negative sign? Note that in a reaction with work done on the system

$$2H_{2(g)} + O_{2(g)} \implies 2H_2O_{(g)} \qquad \Delta n = -1 \text{ and } \Delta V \text{ gets smaller}$$

But since we know we must be (+), (work is being added to the system), then the minus sign is needed to correct sign.

w = $-\Delta nRT = -(-)RT = (+)RT$

Understanding signs is vital, because every thermo answer has a sign, and you can do the math and get the right number, but choose the wrong sign and get the entire problem wrong.

Temperature dependence of free energy

As we will learn, there are two quantities that can be measured to determine free energy in the equation in a temperature dependent reaction, enthalpy, ΔH , and entropy, ΔS :

$$\Delta G = \Delta H - T \Delta S.$$

Case 1: (Always spontaneous) $\Delta G = \Delta H - T \Delta S$ \bigcirc if \bigcirc and \bigoplus	Conditions for ΔG always spontaneous	(Note T is always + so a positive ΔS makes -T ΔS
Case 2: (Never spontaneous) $\Delta G = \Delta H - T \Delta S$ \bigoplus if \bigoplus and \bigoplus	Conditions for ∆G always non- spontaneous	

Case 3: (Temperature dependent) $\Delta G = \Delta H - T \Delta S$ \bigcirc if \bigoplus and \bigoplus and T large \bigcirc if \bigcirc and \bigcirc and T small

Example of temperature dependent spontaneity:

Ice melting: $H_2O(g) \rightarrow H_2O(l)$

Is it spontaneous? It is at high T, but not as in a freezer. So it must be the high T spontaneous case.

$\Delta G = \Delta H - T \Delta S$	← at high T,	
	-T Δ S overcomes Δ H +	

On to explain Energy in 3 forms:

 $\begin{array}{c|c} \Delta H & T \Delta S & W \\ \mbox{enthalpy state function} \\ \mbox{describing heat of} \\ \mbox{reaction} & entropy state function} \\ \mbox{describing disorder of} \\ \mbox{reaction} & First Enthalpy, \Delta H \end{array}$

 $\Delta H \equiv enthalpy can be \bigoplus or \bigoplus$

 \bigcirc = heat given off to surroundings = **exothermic**

Example: CaO + H₂O \rightarrow Ca(OH)₂ + heat Cooks an egg, makes a mess and Δ H is \bigcirc

\bigoplus = heat absorbed so surroundings cold = endothermic

Example: Ba(OH)₂ + NH₄NO₃ \rightarrow NH₃ and other stuff + cold and Δ H is \bigoplus

In general, combustion reactions are exothermic and most spontaneous reactions are exothermic. But not all (see last example above).

• So we can say, exothermicity promotes spontaneity, but is not a necessary condition for spontaneity.

There are 3 ways you will be asked to determine ΔH

- Calorimetry $mC(\Delta T)$ calculation
- Heat of formation calculation
- Bond energy calculation

Entropy: tendency to disorder. In a chemical system ΔS :

\bigoplus = entropy increases

\bigcirc = entropy decreases

As you see from $\Delta G = \Delta H - T\Delta S$, you want ΔS positive for spontaneity. And this makes sense, reactions happen because something is made easier, and increasing disorder, like creating a messy room, is easier than creating order (cleaning up a room).

So can we predict the sign of ΔS ?

Yes, using common sense.

- 1. Increased temperature increases ΔS . Why? When it gets hotter, kinetic energy goes up, velocity goes up, molecules separate more.
- 2. Increased volume increases ΔS . Why? If molecules that bounced around in a cup will be more disordered bouncing around in a gallon jug.
- 3. Solid \rightarrow liquid \rightarrow gas increases Δ S. Why?

4. Increased Δn of reaction increases ΔS . Why? More molecules, more mess.

So we can look at a chemical reaction and predict ΔS :

$$2H_2(g) + O_2(g) \rightleftharpoons 2H_2O(g)$$

 ΔS is \bigcirc . Why?

Two reasons.

first $\Delta n = -1$ (3 \rightarrow 2) so fewer particles made

and

second, $g \rightarrow s$ so the matter is more ordered.

Work

On to work, w, which is the ability of a chemical reaction to push objects around, as in Fxd = w. If you think about it, gas molecules under pressure will exert a force as they achieve large volume. $w = -P\Delta V$

1. enclosed container

2. increase in gas pressure

Note we only talk about gases because solids \rightarrow liquids don't change volume very much.

So can we calculate w? From the ideal gas law:

W = - P Δ V = - Δ nRT (gas law) and for R = 8.3 J/mole K at 300 K so RT \approx 2.5kJ (at room temperature)

So all we need to do is find Δn_{gas} and, at room temperature, work for a gas is a multiple of 2.5 kJ/mole

Example:
$$2H_2O(g) \rightleftharpoons 2H_2 + O_2$$

Example: $2H_2O(g) \rightleftharpoons 2H_2 + O_2$
Example: $2H_2O(1) \rightleftharpoons 2H_2(g) + O_2(g)$
See how easy a work, w, calculation is?
 $\Delta n_{gas} = 3 - 2 = +2 \implies w = -\Delta nRT = -(3)(8.3)(300) = -2.5 \text{ kJ}$