This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| $\mathbf{K}_{n} = \frac{[H^{+}] \cdot [A^{-}]}{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $10^{-14} = K_w$                                  |
| [HA]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $[\mathrm{H}^+] \cdot [\mathrm{OH}^-] = K_w$      |
| $pK_a = -\log K_a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $K_a \cdot K_b = K_w$                             |
| $\mathrm{pH} = -\log\left[\mathrm{H}^{+}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $pK_a + pK_b = pK_w$                              |
| $\rm pOH = -\log\left[OH^{-}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $14 = pK_w$                                       |
| $[OH^{-}] = (K_b \cdot C_b)^{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(K_a \cdot C_a)^{1/2} = [H^+]$                   |
| $[OH^{-}] = K_b \cdot \left(\frac{C_b}{C_a}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $K_a \cdot \left(\frac{C_a}{C_b}\right) = [H^+]$  |
| $[H^+] = (K_{ax} \cdot K_{ay})^{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |
| $pH = 0.5(pK_{ax} + pK_{a})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $_{uy})$                                          |
| $0 = [H^+]^2 - C_a [H^+]^2 - $ | $]-K_w$                                           |
| $K_{sp} = [C]^c \cdot [A]^a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
| $E_{cell}^o = E_{cathode}^o - E_{cathode}^o -$ | <sup>C</sup> anode                                |
| $E_{cell} = E_{cell}^o - \left(\frac{0.0}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\left(\frac{05916}{n}\right) \cdot \log Q$       |
| $Q = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                 |
| $\Delta G^o = -n \cdot F \cdot E^o_{ce}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                                |
| $= -R \cdot T \cdot \ln R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K                                                 |
| $E_{cell}^o = \left(\frac{R \cdot T \cdot \ln R}{n \cdot F}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\left(\frac{K}{2}\right)$                        |
| $\left(\frac{I \cdot t}{n \cdot F}\right) = \text{moles of pro-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oduct                                             |
| Half reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $E^{o}$                                           |
| $\overline{\operatorname{Au}^{3+} + 3e^{-} \longrightarrow \operatorname{Au}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +1.50                                             |
| $\operatorname{Cl}_2 + 2 e^- \longrightarrow 2 \operatorname{Cl}^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +1.36                                             |
| $Ag^+ + e^- \longrightarrow Ag$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +0.80                                             |
| $O_2 + 2e^- + 2H^+ - $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\rightarrow$ H <sub>2</sub> O <sub>2</sub> +0.68 |
| $I_2 + 2 e^- \longrightarrow 2 I^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +0.53                                             |
| $\operatorname{Pb}^{2+} + 2e^{-} \longrightarrow \operatorname{Pb}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.13                                             |
| $\operatorname{Ni}^{2+} + 2 e^{-} \longrightarrow \operatorname{Ni}^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.25                                             |
| $\mathrm{Mn}^{2+} + 2  e^- \longrightarrow \mathrm{Mn}^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n –1.12                                           |

 $Na^+ + e^- \longrightarrow Na$ 

 $\operatorname{Sr}^{2+} + 2 e^{-} \longrightarrow \operatorname{Sr}$ 

$$F = 96,485.3 \,\mathrm{C} \,\mathrm{per} \,\mathrm{mole} \,\mathrm{of} \,\mathrm{e}^{-1}$$
  
Ampere = 1 C · s<sup>-1</sup>  
$$R = 8.314 \,\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}$$
$$N = 6.022 \times 10^{23}$$

## LDE Simple Buffer Calc 002 001 6.0 points

What would be the pH of a solution prepared from 200 mL of 5 M HOBr and 200 mL of 1 M NaOBr? The  $K_a$  of hypobromous acid is  $2 \times 10^{-9}$ .

**1.** 6

**2.** 10

3. 8 correct

**4.** 4

**5.** 7

-2.71

-2.89

### LDE Identifying Buffers 002 002 6.0 points

Which of the following pairs of solutions would result in a buffer upon mixing?

1. 2 L of 0.1 M  $C_6H_5NH_2$ ; 3 L of 0.05 M HI correct

**2.** 5 L of 0.1 M NH<sub>3</sub>; 1 L of 0.5 M HCl

 $\mathbf{3.100}\ \mathrm{mL}$  of 0.3 M HCOOH; 50 mL of 0.3 M H2SO4

4. 200 mL of 1 M HClO<sub>2</sub>; 100 mL of 1 M Ba(OH)<sub>2</sub>

## LDE Rank Base Strength by pKb 002 003 6.0 points

Rank following bases from most to least basic:hypochlorite (ClO<sup>-</sup>) $pK_b = 12.1$ nitrite (NO<sub>2</sub><sup>-</sup>) $pK_b = 10.6$ hypoiodite (IO<sup>-</sup>) $pK_b = 3.3$ cyanide (CN<sup>-</sup>) $pK_b = 4.8$ 

1. 
$$NO_2^- > CIO^- > IO^- > CN^-$$
  
2.  $CN^- > NO_2^- > CIO^- > IO^-$   
3.  $IO^- > CN^- > NO_2^- > CIO^-$  correct

4.  $ClO^- > IO^- > CN^- > NO_2^-$ 

# LDE Simple Buffer Capacity 001 004 6.0 points

Consider 4 L of a buffer composed of 2 M HCN and 3 M NaCN? How many moles of strong acid could this buffer withstand?

**1.** 8

**2.** 12 **correct** 

**3.** 3

**4.** 0

#### **5.** 2

### LDE Buffer Neutralization Calc 002 005 6.0 points

If one added 20 mL of 0.04 M Ba(OH)<sub>2</sub> to 100 mL of a buffer composed 0.1 M acrylic acid and 0.05 M sodium acrylate, what would be the pH of the resulting solution? Acrylic acid has  $K_a 5.6 \times 10^{-5}$ .

1.3.95

2. 4.15 correct

**3.** 4.37

**4.** 3.78

**5.** 4.55

## LDE Understanding Titration Curves 001 006 6.0 points

Consider the titration curve below.





At which point is the  $pH = pK_b$ ?

**1.** A

**2.** C

**3.** none of these **correct** 

**4.** B

LDE Titration Excess Calc 001 007 6.0 points WITHDRAWN

## LDE Titration Equiv Pt Calc 002 008 6.0 points

What will be the pH at the equivalence point of a titration of 0.5 M acrylic acid with an equimolar solution of NaOH? Acrylic acid has a  $K_a$  of 5.6 × 10<sup>-5</sup>.

**1.** 5.18

**2.** 8.82 **correct** 

**3.** 8.97

4. not enough information

**5.** 11.57

**6.** 7.00

| LDE Molar Solubility Estimation 001         |                                         |  |  |
|---------------------------------------------|-----------------------------------------|--|--|
| 009 6.0 points                              |                                         |  |  |
| Which of the following salts would have the |                                         |  |  |
| lowest molar solubility?                    |                                         |  |  |
|                                             |                                         |  |  |
| 1. CuCl                                     | $K_{\rm em} = 1.02 \times 10^{-6}$      |  |  |
| 1.0001                                      | $m_{sp} = 1.02 \times 10$               |  |  |
| $2 C_{2} F_{2}$                             | $K = 3.05 \times 10^{-11}$              |  |  |
| <b>2.</b> Oar 2                             | $M_{sp} = 5.55 \times 10$               |  |  |
| $2  \mathbf{A} = \mathbf{C} \mathbf{O}$     | $V_{10} = 6.15 \times 10^{-12}$ correct |  |  |
| <b>5.</b> $Ag_2 CO_3$                       | $\Lambda_{sp} = 0.13 \times 10$ correct |  |  |
|                                             |                                         |  |  |

4. Li<sub>3</sub>PO<sub>4</sub> 
$$K_{sp} = 2.37 \times 10^{-4}$$

### LDE Molar Solubility Calculation 003 010 6.0 points

The  $K_{sp}$  of Cd<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> at 18 <sup>o</sup>C is 1.08 × 10<sup>-33</sup>. What is its molar solubility at this temperature?

- **1.**  $6.5 \times 10^{-11} \text{ M}$
- **2.**  $2.5 \times 10^{-9}$  M
- **3.**  $3.3 \times 10^{-17}$  M
- 4.  $1.0 \times 10^{-7}$  M correct

#### LDE Common Ion Solubility Calc 001 011 6.0 points

What would be the molar solubility of Cu<sub>2</sub>S  $(K_{sp} = 2 \times 10^{-47})$  in a  $2 \times 10^{-3}$  M solution of CuNO<sub>3</sub>?

- **1.**  $1.7 \times 10^{-16}$
- **2.**  $5.0 \times 10^{-42}$  correct
- **3.**  $1.3 \times 10^{-43}$
- **4.**  $1.0 \times 10^{-44}$

#### LDE Selective Precipitation 001 012 6.0 points

Consider the  $K_{sp}$  data below and determine which two metal ions would be the most difficult to separate using the oxalate anion  $(C_2O_4^-)$ .

 $CuC_2O_4$   $K_{sp} = 2.87 \times 10^{-8}$ 

- FeC<sub>2</sub>O<sub>4</sub> PbC<sub>2</sub>O<sub>4</sub> MgC<sub>2</sub>O<sub>4</sub>  $K_{sp} = 2.10 \times 10^{-7}$   $K_{sp} = 2.74 \times 10^{-11}$  $K_{sp} = 8.57 \times 10^{-5}$
- **1.**  $Cu^{2+}$  and  $Pb^{2+}$
- **2.**  $Cu^{2+}$  and  $Fe^{2+}$  correct
- **3.**  $\mathrm{Fe}^{2+}$  and  $\mathrm{Mg}^{2+}$
- **4.**  $Pb^{2+}$  and  $Mg^{2+}$
- **5.**  $\operatorname{Fe}^{2+}$  and  $\operatorname{Pb}^{2+}$
- **6.**  $Cu^{2+}$  and  $Mg^{2+}$

### LDE Acid/Base Assumptions 002 013 6.0 points

When using the equation  $[H^+] = (K_a C_a)^{1/2}$ , why should the value of  $K_a$  be less than  $10^{-4}$ ?

**1.** To enure that  $[H^+]$  and  $[A^-]$  are nearly equal.

2. To ensure that the initial and equilibrium concentrations of HA are nearly equal. correct

**3.**  $K_a$  doesn't need to be less than  $10^{-4}$ 

**4.** To ensure that water's contribution to  $[H^+]$  is negligible.

## LDE Polyprotic Acid Equil 002 014 6.0 points

Consider a tetraprotic acid of the form H<sub>4</sub>A. If a buffer is formed by placing Li<sub>2</sub>H<sub>2</sub>A and Li<sub>3</sub>HA in solution, which  $K_a$  is used to solve the buffer equation?

1. not enough information

- **2.**  $K_{a4}$
- **3.**  $K_{a3}$  correct

**4.**  $K_{a1}$ 

5.  $K_{a0}$ 

**6.** *K*<sub>*a*2</sub>

## LDE Polyprotic Amphiprotic Calc 003 015 6.0 points

Determine the pH of a 0.03 M solution of NaH<sub>2</sub>PO<sub>4</sub>? Assume H<sub>3</sub>PO<sub>4</sub> has a p $K_{a1}$  of 2.1 and a p $K_{a2}$  of 7.2 and a p $K_{a3}$  of 12.7.

**1.** 7.40

**2.** 7.11

**3.** 1.81

**4.** 4.36

**5.** 4.65 **correct** 

**6.** 9.95

#### LDE Charge Balance 001 016 6.0 points

Write the charge balance for a solution that initially contains CsF and  $CaCO_3$ .

**1.** 
$$[Cs^+] + 2[Ca^{2+}]$$
  
=  $[F^-] + 2[CO3^{2-}] + [HCO3^-]$   
**2.**  $[Ca^+] + [Ca^{2+}]$ 

$$= [F^{-}] + [CO3^{2-}] + [HCO3^{-}]$$

**3.** 
$$[Cs^+] + 2[Ca^{2+}] = [F^-] + 2[CO3^{2-}]$$

4. 
$$[Cs^+] + 2[Ca^{2+}] + [H^+]$$
  
=  $[OH^-] + [F^-] + 2[CO3^{2-}] + [HCO3^-]$ 

correct

5. 
$$[Cs^+] + 2[Ca^{2+}] + [H^+]$$
  
=  $[OH^-] + [F^-] + 2[CO3^{2-}]$   
6.  $[Cs^+] + [Ca^{2+}] + [H^+]$   
=  $[OH^-] + [F^-] + [CO3^{2-}] + [HCO3^-]$ 

## LDE Complex Equilibria 002 017 6.0 points

How many equations are needed to fully determine an aqueous system initially containing the strong electrolyte  $NH_4NO_2$ ?

**1.** 4

**2.** 6 correct

**3.** 7

**4.** 2

## LDE Polyprotic K Expression 001 018 6.0 points

Which of the following would be equal to  $K_{a3}$  for orthocarbonic acid, H<sub>4</sub>CO<sub>4</sub>?

1. 
$$\frac{[H_4CO_4]}{[H^+]^3 \cdot [HCO_4^{3-}]}$$
2. 
$$\frac{[H^+]^3 \cdot [HCO_4^{3-}]}{[H_2CO_4^{2-}]}$$
3. 
$$\frac{[H_2CO_4^{2-}]}{[H^+] \cdot [HCO_4^{3-}]}$$
4. 
$$\frac{[H^+] \cdot [HCO_4^{3-}]}{[H_2CO_4^{2-}]}$$
correct

5.  $\frac{[\mathrm{H^+}]^3 \cdot [\mathrm{HCO}_4^{3-}]}{[\mathrm{H}_4\mathrm{CO}_4]}$ 

#### LDE Dilute Strong Quadratic Calc 001 019 6.0 points

What would be the pH of a  $10^{-9}$  M solution of HCl?

- 6.954
   6.921
   6.998 c
- **3.** 6.998 **correct**
- **4.** 6.876

## LDE Sulfuric Acid Calc 001

020 6.0 points WITHDRAWN

## LDE Polyprotic Conj Base Calc 001 021 6.0 points

What would be the pH of a 0.4 M Na<sub>2</sub>CO<sub>3</sub> solution? Carbonic acid has  $K_{a1} = 2.5 \times 10^{-4}$ ,  $K_{a2} = 5.6 \times 10^{-11}$ .

1.2.07

**2.** 8.60

**3.** 5.40

- 4. 11.93 correct
- **5.** 7.00

## LDE Balance Half Rxn Acid 001 022 6.0 points

Fully balance the half-reaction below in acid.

$$PbO_2 + HSO_4^- \longrightarrow PbSO_4$$

What is the change in oxidation number for lead (Pb)?

**1.** +4 to +8

**2.** +4 to +3

**3.** +4 to +6

**4.** +4 to +2 **correct** 

5. no change

**6.** +4 to +1

### LDE Balance Full Rxn Base 001 023 6.0 points

Fully balance the half-reaction below in base.

$$I_2 + Mn^{2+} \longleftrightarrow I^- + MnO_2$$

What is the sum of the coefficients?

| 1. | 11 correct |
|----|------------|
| 2. | 12         |
| 3. | 14         |
| 4. | 5          |
| 5. | 9          |

rect

## LDE Rank Oxidzing Agent 001 024 6.0 points

Consider the provided table of standard reduction potentials. Rank the following species from weakest to strongest oxidizing agent:  $Ni^{2+}$ ,  $Sr^{2+}$ ,  $I_2$ ,  $Au^{3+}$ ,  $Ag^+$ .

| 5. $Sr^{2+} < Ni^{2+} < I_2 < Ag^+ < Au^{3+}$ cor-   |
|------------------------------------------------------|
| <b>4.</b> $Au^{3+} < Sr^{2+} < Ag^+ < I_2 < Ni^{2+}$ |
| <b>3.</b> $Ag^+ < I_2 < Ni^{2+} < Au^{3+} < Sr^{2+}$ |
| <b>2.</b> $Sr^{2+} < I_2 < Au^{3+} < Ag^+ < Ni^{2+}$ |
| <b>1.</b> $Ag^+ < Au^{3+} < I_2 < Ni^{2+} < Sr^{2+}$ |

### LDE EC Cell Nomenclature 001 025 6.0 points

If the two half reactions below were used to make an electrolytic cell, what species would be consumed at the anode?

| Half reaction                                                               | $E^{\circ}$ |
|-----------------------------------------------------------------------------|-------------|
| $\operatorname{Au}^{3+}(aq) + 3 e^{-} \longrightarrow \operatorname{Au}(s)$ | +1.50       |
| $I_2(s) + 2e^- \longrightarrow 2I^-(aq)$                                    | +0.53       |
| <b>1.</b> Au <sup>3+</sup> (aq)                                             |             |
| <b>2.</b> I <sup>-</sup> (aq)                                               |             |
| <b>3.</b> I <sub>2</sub> (s)                                                |             |
| 4. Au (s) correct                                                           |             |

## LDE EC Cell Nomenclature 002 026 6.0 points

Far a battery, the cathode is the (positive/negative) terminal and the electrons flow through the external circuit from (anode to cathode/cathode to anode).

- **1.** positive, cathode to anode
- 2. negative, anode to cathode
- 3. negative, cathode to anode
- 4. positive, anode to cathode correct

## LDE Simple Ecell Calc 002 027 6.0 points

What would be the  $E^{\circ}$  cell of an electrolytic cell made from the following two half reactions?

| Half reaction                                                                                                                                                                 | $E^{\circ}$      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| $\operatorname{AgCl}(s) + e^{-} \longrightarrow \operatorname{Ag}(s) + \operatorname{Cl}^{-}(aq)$ $\operatorname{Al}^{3+}(aq) + 3 e^{-} \longrightarrow \operatorname{Al}(s)$ | $+0.22 \\ -1.66$ |

**1.** 1.88

**2.** 1.44

**3.** -1.44

**4.** -1.88 **correct** 

## LDE G from E Calc 001 028 6.0 points

What is  $\Delta G^{\circ}$  for the reaction below?

$$\frac{\text{Reaction}}{\text{ClO}^{3-} + 6 \,\text{H}^+(aq)} \longrightarrow \frac{1}{2} \,\text{Cl}_2(g) + 3 \,\text{H}_2\text{O}(\ell) + 1.47$$

**1.**  $194 \text{ kJ} \cdot \text{mol}^{-1}$ 

**2.** 194,000 kJ  $\cdot$  mol<sup>-1</sup>

**3.**  $-1,418 \text{ kJ} \cdot \text{mol}^{-1}$ 

4.  $-709 \text{ kJ} \cdot \text{mol}^{-1}$  correct

## LDE Current Stoicihometry Calc 001 029 6.0 points

How long would a current of 10 mA take to produce 0.096 g of Mo(s) from  $Mo^{5+}(aq)$ ?

**1.** 48, 242, 500 s

**2.** 964, 850 s

**3.** 9, 648, 500 s

**4.** 48, 242.5 s **correct** 

**5.** 4, 824, 250 s

**6.** 9, 648.5 s

## LDE Nernst Equation Calc 001 030 6.0 points

A battery formed from the two half reactions below dies (reaches equilibrium). If  $[Fe^{2+}]$  was 0.24 M in the dead battery, what would  $[Cd^{2+}]$  be in the dead battery?

| Half reaction                                  | $E^{\circ}$ |
|------------------------------------------------|-------------|
| $\mathrm{Fe}^{2+} \longrightarrow \mathrm{Fe}$ | -0.44       |
| $\mathrm{Cd}^{2+} \longrightarrow \mathrm{Cd}$ | -0.40       |

**1.** 120.3 M

**2.** 0.01 M correct

**3.** 5.4 M

 ${\bf 4.}\; 0.0.0005\; {\rm M}$