Today

Functional Groups

Reactions

Are these the same molecule? Sidzchain ZC from end A. Yes

Are these the same molecule?

A. Yes

B. No

Structural Isomer (constitutional isomers)

Same atoms and bonds, different bonding pattern

Stereo Isomer (spatial isomers)

Same bonding pattern, different orientations in space

Structural isomers

n-hexane

2 methyl pentane

Structural isomers (functional isomers)

ethanol

dimethyl ether

Stereoisomers

Diastereomer (can interconvert)

cis dichloro ethene

trans dichloroethene

Stereoisomers

Enantiomers (chiral molecules)

Molecules cannot be superimposed (left and right hand versions)

Chiral Center (place where the chirality arises)

Carbon (or other atom) with 4 different substituents

R)-3,4-dihydroxy-5-((S)- 1,2-dihydroxyethyl)furan-2(5H)-one

RS)-2-(4-(2-methylpropyl)phenyl)propanoic acid

These two molecules are

- A. structural isomers
- stereo isomers
- C. functional isomers
- D. A & C
- E. B & C

Dienes

Two double bonds

5 carbon chain, parent penta

no side chains

two double bonds diene position I and 3

penta-1,3-diene

Alkyne

Carbon Carbon Triple Bond

Suffix -yne

2 methyl 3 hexyne

Different functional groups Different properties Different Chemistry

For example

In hydrocarbons (All C and H) most reactivity is at double or triple bonds

Hydrocarbons with all single bonds are called "saturated"

Other functional groups

Common Ethanol

R = Generic representation of the rest of the molecule

functional group

-OH group is an alcohol suffix is -ol

Primary alcohol at the end R-CH₂OH
Secondary at a carbon with one H (mid chain) R,R'CHOH
Tertiary three carbon chains R,R',R"COH

Name this compound

- A. 2 heptanol
- B. 4 hexanol
- C. 2-ethyl I-butanol
- D. 2-ethyl I-pentanol
- E. 3 hexanol

This compound is a

- A. primary alcohol
- B. secondary alcohol
- C. tertiary alcohol

Ketone

carbon double bonded to an oxygen bonded to carbons on either side suffix is -one

Which of the following is a ketone? В A. A Ester B. B Aldohyde D. A & B E. all three

carbon double bonded to an oxygen bonded to carbon on one side (like a ketone at the end of a chain) suffix is -al

Name this compound

- A. 3 hexenal
- B. 3, I-hexenal
- C. 3,6 hexenal
- D. 6,3 hexalene
- E. 1,3 hexene-al

Aldehyde end

It the end

I no need to say

It is carbon #1

Carboxylic Acid

carbon double bonded to an oxygen bonded to carbon on one side OH on the other side suffix is -oic acid

Name this compound

- A. methanoic acid
- B. ethanoic acid
- C. propanoic acid
- D. 3 hydroxy 2 propanone
- E. propanol

Name this compound

- A. methanoic acid
- B. ethanoic acid
- C. propanoic acid
- D. 3 hydroxy 2 propanone
- E. propanol

No need to number carboxylic acid its always at the end

this compound is also commonly known as acetic acid

carbon double bonded to an oxygen bonded to carbon on one side OR on the other side suffix is -eiensid

Name this compound

- A. ethyl butanoate
- B. butyl methanoate
- C. methyl heptanoate
- D. butyl ethanoate
- E. pentyl ethanoate

Name this compound

- A. ethyl butanoate
- B. butyl methanoate
- C. methyl heptanoate
- D. butyl ethanoate
- E. pentyl ethanoate

No need to number ester name the two sides

part with the carbonyl (C=O) is the parent other part is like the side chain

Ether

Diethyl Ether (knocks you out)

carbon oxygen in the middle of the chain suffix is -ether

Treat as two "side chains"

methyl ethyl ether

Primary Amine

R-NH₂

-NH₂ group is an amine suffix is -amine

Primary amine one carbons chain Secondary amine two carbons chains Tertiary amine three carbon chains

Amide

carbon double bonded to an oxygen bonded to carbon on one side N on the other side suffix is -amide

Naming amide Treat part with C=O as parent parts on the N as sidechains

pentanamide

N-ethyl-N-methylpentanamide

Amine

Ether

Ketone

Amide

Alcohol

Carboxylic Acid

Ester

Alkene

Important Reaction for Biochemistry

Formation of an Amide

The don't call them functional groups for nothing

Carboxylic Acid

Primary Amine

Amino Acid

Carboxylic End and Amine End
Can react with itself
(or similar molecules) in a chain

Polypeptide

Two distinct ends
N-terminus is an amine
C-terminus is a carboxylic acid

Carboxylic Acid Alcohol

R

OH

H

OR

R

$$+$$

R

Ester + Water

Triglycerides

Fatty Acid (carboxylic acid with long chain)

C₁₂H₂₅COOH

Makes Trigylceride

The three fatty acids can all be the same or different

High levels of triglycerides is linked to build up of plaque in the arteries = heart disease

Alcohol

Alcohol

$$R^{\circ} R' + H_2O$$

Ether + Water

Sugars

Glucose (key factor for sugars lots of hydroxyls)

They can react to form chains of sugars polysaccharide

Celluose

Very long ether chain (pretty much all plant material)

Polysaccharide (Starch)

Sugars, Carbohydrates monosaccharides (one) disaccharides (two) polysaccharides (many)

Principles of Chemistry II

© Vanden Bout

Condensation Reactions (two molecules make one + water)

Carboxylic Acid + Amine = Amide + water

Carboxylic Acid + Alcohol = Ester + water

Alcohol + Alcohol = Ether + water