Today

Radioactive Decay

First a refresher on nuclear reactions

How does a typical nuclear reaction compare to a chemical reaction in terms of energy change?

the energy per mole for a nuclear reaction is roughly

- A. I0 times larger
- B. 103 times larger
- C. 106 times larger
- D. 10⁹ times larger
- E. 10¹² times larger

What is the energy released in this reaction?

$$H(g) + H(g) \longrightarrow H_2(g)$$

		Multiple Bonds					
н-н	432	N—H	391	I—I	149	C=C	614
H-F	565	N-N	160	I-Cl	208	$C \equiv C$	839
H-Cl	427	N-F	272	I—Br	175	o=o	49:
H-Br	363	N-CI	200			C=O*	74
H-I	295	N—Br	243	S-H	347	C≡O	107
		N-O	201	S-F	327	N=O	60
C-H	413	О-Н	467	S-Cl	253	N=N	41
C-C	347	0-0	146	S-Br	218	N = N	94
C-N	305	O-F	190	s-s	266	C = N	89
C-O	358	O-Cl	203			C=N	61
C-F	485	O—I	234	Si-Si	340		
C-Cl	339			Si-H	393		
C-Br	276	F-F	154	Si-C	360		
C-I	240	F-Cl	253	Si-O	452		
C-S	259	F—Br	237				
		CI-CI	239				
		Cl-Br	218				
		Br—Br	193				

What about this reaction?

$$^{2}_{1}H + ^{2}_{1}H \longrightarrow \frac{4}{2}$$
 He

- A. ²He
- B. ²₂He
- C. ⁴₂He

How much energy is release per helium atom?

$${}^{2}_{1}H + {}^{2}_{1}H \longrightarrow {}^{4}_{2}He$$
mass 2.0141 u 2.0141 u 4.0026 u
$$\Delta M = 4.0026 - 2(2.0141)$$

$$1 u = 1.66 \times 10^{-27} \text{ kg} = -0.0256 \text{ u}$$

$$c = 3.0 \times 10^{8} \text{ m s}^{-1} \Delta M = -0.0256 \left(1.66 \times 10^{-27} \text{ kg}\right)$$

$$\Delta E = mc^{2} \qquad E = \Delta_{m}c^{2} = -3.8 \times 10^{-12} \text{ J}$$

$$-3.8 \cdot 10^{-12} \text{ J} \times \lambda_{2} = 1.8 \cdot 10^{7} \text{ kJ mul}^{-1}$$
nciples of Chemistry II $\approx 180 \cdot 10^{6} \text{ kJ mul}^{-1} \text{ evanden Bout}$

Principles of Chemistry II

Like chemistry we can write a reaction down but it is not necessarily the one that happens

$$_{1}^{2}H + _{1}^{2}H \longrightarrow _{1}^{3}H + _{1}^{1}p^{+}$$

What reaction could be spontaneous?

What reaction could be spontaneous?

$$\Delta E < 0$$

$$\Delta m < 0$$

Why are we now only talking about energy instead of free energy (ΔG)

- A. the energy term is so large it dominates
- B. the entropy change is always zero in a nuclear reaction
- C. only molecules have entropy

Radioactive Decay

Some nuclei are more stable than others (they are lower in energy)

Therefore there can be a spontaneous reaction to change the nucleus to form the more stable atom

this change is accompanied by "nuclear radiation"

What is nuclear radiation?

- A. electrons
- B. small nuclei
- C. high energy electromagnetic radiation
- D. A & B
- E. all of the above

Three basic types of nuclear radiation

- Radioactivity the spontaneous emission of radiation by certain elements (Madame Curie).
- Radiation was classified by Rutherford according to its penetrating power
 - alpha rays penetrated the least (a sheet of paper blocked them),
 - beta rays were more penetrating (a book stopped them),
 - and gamma rays were the most penetrating (requiring lead).

Three basic types of nuclear radiation

alpha radiation positive and massive

beta radiation negative and low mass

gamma radiation uncharged (no mass)

Three basic types of nuclear radiation

Table 7.2		Types of Nuclear Radiation			
Туре	Symbol	Consists of	Charge	Change to nucleus that emits it	
Alpha	⁴ ₂ He	2 protons 2 neutrons	2+	The mass number decreases by 4, and the atomic number decreases by 2.	
Beta	_0e	an electron	1-	The mass number does not change, and the atomic number increases by 1.	
Gamma	0γ	photon of energy	0	No change in either the mass number or in the atomic number.	

Effects of all three is very different

Alpha particles

If they get into your body they can be very harmful

bare Helium nucleus
will rip electrons off molecules
ionization of biomolecules = unhealthy you

Generally not harmful as they are absorbed by your outer layer of dead skin (bad news if they get in your lungs!)

http://www.epa.gov/rpdweb00/understand/ alpha.html#affecthealth

Gamma rays

This is what will do you in.

Hard to protect against

Highly ionizing.

Like the world's worst sunburn

(except the radiation can penetrate)

http://www.epa.gov/rpdweb00/understand/gamma.html#affecthealth

Types of decay

Beta decay

Beta (-) decay

"Too many" neutrons

$${}_{6}^{14}C \longrightarrow {}_{7}^{14}N + {}_{-1}^{0}e^{-} + v$$

For this to happen spontaneously $\Delta m < 0$

Beta (+) decay (positron emission)

"Too many" protons

$$_{6}^{11}C \longrightarrow _{5}^{11} \cancel{\cancel{B}} + _{+1}^{0}e^{+} + v$$

or

electron capture

$$^{23}_{92}U + ^{0}_{-1}e^{-} \longrightarrow ^{23}_{91}Pa + v$$

alpha decay

$$^{238}_{92} U \longrightarrow ^{234}_{90} Th + ^{4}_{2} He$$

Where is all the gamma radiation?

Kinetics of radioactive decay

There is simply a chance of it happening.

Therefore the number of decays per second depends number of atoms

$$^{14}_{6}C \longrightarrow ^{14}_{7}N + ^{0}_{-1}e^{-} + v$$

"unimolecular"
First order in C

Radioactive decay is first order

Half-life: the time required for the level of radioactivity to fall to one-half of its value. Example of decay of Pu-239.

The most dangerous radioactive compounds will emit beta and gamma radiation and have half-lives that are

- A. very very short lot 4 Ralistic SHORT

 B. very very long little Ral. FOREVER
- C. some where in between
- D. the half life is irrelevant

Nuclide	t _{1/2}	Decay Mode [†]	Daughter
	*1/2	-	
3H (tritium)	12.20 years	e-	³ He
⁸ Be	$\sim 1 \times 10^{-16} \text{ s}$	α	⁴ He
14C	5730 years	e ⁻	14N
11Na	2.601 years	e ⁺	²² ₁₀ Ne
11Na	15.02 hours	e ⁻	²⁴ ₁₂ Mg
32 ₁₅ P	14.28 days	e ⁻	32S
35 16S	87.2 days	e-	35CI
36CI	3.01 × 10 ⁵ years	e-	36 18Ar
40 19 K	1.28×10^9 years	(e ⁻ (89.3%)	40 20 Ca
		(E.C. (10.7%)	40 18Ar
⁵⁹ Fe	44.6 days	e-	59Co
60 27 Co	5.27 years	e-	60Ni
90 38 Sr	29 years	e-	90Y
¹⁰⁹ ₄₈ Cd	453 days	E.C.	¹⁰⁹ Ag
125 53	59.7 days	E.C.	¹²⁵ Te
131 ₅₃ I	8.041 days	e-	¹³¹ Xe
¹²⁷ Xe	36.41 days	E.C.	127 53
¹³⁷ La	\sim 6 \times 10 ⁴ years	E.C.	¹³⁷ 56Ba
²²² 86Rn	3.824 days	α	²¹⁸ ₈₄ Po
²²⁶ 88Ra	1600 years	α	²²² ₈₆ Rn
²³² Th	$1.40 \times 10^{10} \text{ years}$	α	²²⁸ ₈₈ Ra
235 92 U	7.04×10^8 years	α	²³¹ ₉₀ Th
238 92 0	4.468×10^9 years	α	²³⁴ ₉₀ Th
²³⁹ ₉₃ Np	2.350 days	e ⁻	²³⁹ ₉₄ Pu
9314P 239 94Pu	$2.411 \times 10^4 \text{ years}$	α	235 92 U

 $^{^{\}dagger}$ E.C. stands for electron capture; e^+ for positron emission; e^- for beta emission; α , for alpha emission.

^{© 2007} Thomson Higher Education

All nuclear reaction are first order?

All nuclear reaction are first order?

