If you know [H⁺] you know [OH⁻]

$$|ag| \rightarrow 10$$
 $|ag| (K_W) = |ag| [H^{\dagger}] [OH^{\dagger}]$
 $|ag| (K_W) = |ag| [H^{\dagger}] [OH^{\dagger}]$
 $|ag| (K_W) = |ag| [H^{\dagger}] + |ag| [OH^{\dagger}]$
 $|ag| (IO^{M}) = -pH - pOH$
 $-14 = -pH - pOH$
 $= DH + pOH$

Weak Acid

$$HA(aq) \longrightarrow H^{+}(aq) + A^{-}(aq)$$

$$HA \qquad H^{+} \qquad A^{-}$$

$$I \qquad C_{A} \qquad O \qquad O$$

$$C \qquad + x \qquad + x$$

$$E \qquad C_{-}x \qquad + x \qquad + x$$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{(x)(x)}{C_{-}x} \approx C_{A} \qquad x \sim \sqrt{K_{a}C_{A}}$$

© Vanden Bout

Principles of Chemistry II

This is a great simple result

 $[H^+] \approx \sqrt{K_a C_a}$

SM311 /2 > 107

 C_a is the concentration of the acid K_a is the equilibrium constant for the acid

This assumes the concentration is large and that Ka is small

conc. Weak acid solin

What is the pH of a IM solution of weak acid with a $K_a = 10^{-6}$?

protonated

$$B(aq) + H_2O(I) \longrightarrow BH^+(aq) + OH^-(aq)$$

$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

identical result as before (same assumptions)

$$[OH-] = \sqrt{K_bC_b}$$

$$RASE$$

Principles of Chemistry II

© Vanden Bout

Weak Base

A-(aq) +H₂O(l)
$$\longrightarrow$$
 HA(aq) + OH-(aq)
$$K_b = \frac{\text{CHA][OH-]}}{\text{CA-]}}$$

identical result as before (same assumptions)

Same with the base

B(aq)
$$+H_2O(I) \longrightarrow BH^+(aq) + OH^-(aq)$$

without the proton base with the proton acid

$$BH^+(aq) \longrightarrow H^+(aq) + B(aq)$$

ACID

Weak acids

HA) and (BH+)

Name is acid HA "acetic acid"

BH⁺ has a positive charge and an "extra" proton NH₄⁺

Weak bases

B and A-

A⁻ is negative usually name ends in "ate" CH₃COO⁻ acetate

B is hardest to identify it is not one of the other three

•

What is the pH of a IM solution of sodium benzoate?

N^{*}

A. 4.9

B. 5.1

C. 6.2

D. 7

E. 9.09

How can I get K_b for benzoate if I have K_a for benzoic acid?

Strength of Acids The larger the K_a the more $[H^+]$

The larger the Ka the stronger the acid

Since $K_a \times K_b = K_w$

the larger the Ka the smaller the Kb

Which dissociates more?

HA - H+ + Amore H+ - stronger acid. Inror K2 - stronger acid.

> Kw = Ks Ks CONST

Mg(OH) Small Ksp.

Strong Bases

Lithium Hydroxide
Sodium Hydroxide
Potassium Hydroxide
Rubidium Hydroxide
Cesium Hydroxide
Calcium Hydroxide
Barium Hydroxide
Strontium Hydroxide

LiOH NaOH KOH RbOH CsOH Ca(OH)₂ Ba(OH)₂ Sr(OH)₃

All Dissociate 100%

What if we have a solution with both HA and A⁻ (or B and BH⁺)

A solution with both the protonated and deprotonated form of a weak acid or weak base is a buffer (HA & A⁻ or BH⁺& B)

What is the pH of a buffer that contains I mole of

benzoic acid and I mole of of sodium benzoate? $K_a = 6.5 \times 10^{-5}$

 $HA(aq) \longleftrightarrow H^{+}(aq) + A^{-}(aq)$

How are we going to control this equilibrium?

AH bbA

Add A-

shift to the "products"

shift to the "reactants"

Remove H⁺

Add H⁺ STRONG shift to the "reactants"

shift to the "products"

Neutralization

A solution can be neutralized (equal amounts of H⁺ and OH⁻) decomposed by adding an acid or base to the solution

As you are mixing two solutions, it is generally easiest to think in terms of moles (rather than molarity)

What volume of a 0.1 M NaOH will you need to add to 200 mL of a 0.2 M HC1 solution of HCl to neutralize it?

A. 100 mL .2 L x .2 M = .04 mdes H[†]
B. 200 mL

C. 300 mL

D. 400 mL OH moles OH

E. 500 mL | M x V = .04

V=.4L

How to deal with mixing acids and bases

First figure out what is in solution

Neutralize H⁺ and any base (neutralize OH⁻) and any acid

STRONG ACID

STRONG BASE What is left? WEAK ACID BASE HA and A BHT and B

weak acid/strong base neutralization example 100 ml of .1 M Na(CH3COO) + 50 mL of 2001 M ALESTE. HCI 1 L x . IM = . 01 mdes A-OSL X.IM = .005 males Ht +.005

Buffer

$$C_A = C_B$$

$$\begin{bmatrix} H^{\dagger} \end{bmatrix} = K_a C_A I$$

$$to_3[H^{\dagger}] = log K_a$$

$$-pH = -pK_a - rr - log K_a$$

$$pH = pK_a - rr - log K_a$$

Protonabled

Protonabled

Appretenated

 $\begin{bmatrix} HA \end{bmatrix} = \begin{bmatrix} A \cdot \end{bmatrix} & PH - PK_3 \\ HA \end{bmatrix} > \begin{bmatrix} A^- \end{bmatrix} & PH < PK_3 \\ PH > PK_3 \\ PH >$