Chemical Equilibria

Why did the color stop changing?

- A. the reactants were all converted to products
- B. the reaction came to equilibrium
- the forward and backward reaction rates are the same
- D. B & C
- E. all of the above

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

ACID

BASE

During the reaction the ratio of yellow to blue changes

At equilibrium the ratio of the molecules stops changing it is critical you remember your stiochiometery!

Imagine you start out with I0 mole of H₂ and I moles of N₂

At equilibrium you find you have I mole of NH₃ How many moles of H₂ are there at equilibrium?

A. 5 moles H₂

B. 7 moles H₂

C. 8.5 moles H₂

D. 9.5 moles H₂

Keeping it straight (R)ICE diagram

$$3H_2(g) + N_2(g) \longrightarrow 2NH_3(g)$$

Compound

10

Initial

(-3 x

Equilibrium

Nz

-x

-x = .5

NH3

0

+2×

 $\frac{1}{2}x = 1$

What is happening? Reaction has not stopped

Equal reaction rates forward and backwards

The key idea

The ratios of the molecules stops changing We discover the ratio is a constant

We'll give the ratio a name

K

The equilibrium constant
It has to do with equilibrium
It is a constant

Let's Look an example

$$A + B \longleftrightarrow AB$$

Initially 4A and 4B

Equilibrium

What is the ratio at equilibrium?

$$\left(\frac{1}{2}\right) = \frac{1}{4} = \frac{1}{1} = \frac{1}{1}$$

Let's Look an example

$$A + B \longleftrightarrow AB$$

Initially 14AB

Equilibrium

What is the ratio at equilibrium?

$$\frac{\#AB}{\#A \times \#B} = \frac{12}{(2)(2)} = \frac{3}{2}$$

Why are there sometime "standard pressures"

You can only leave it out if the pressure has the same units as the standard pressure

THESE UNITS

What is the expression for the equilibrium constant for this reaction?

$$3H_2(g) + N_2(g) \longleftrightarrow 2NH_3(g)$$

K depends on Δ_r \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

You need to be able to use a table to find $\Delta_r G^\circ$ from $\Delta_f G^\circ$ or from $\Delta_f H^\circ$ to find $\Delta_r H^\circ$ and S° to find $\Delta_r S^\circ$

Interpreting K and Δ_rG°

Pure **Products** (in standard state) are Lower in Free Energy

Pure **Reactants** (in standard state)
Lower in Free Energy

Favors

FZVORS

For a particular reaction
$$\Delta_r H^\circ = 10 \text{ kJ mol-}^1 \text{ and } \Delta_r S^\circ = 20 \text{ J K-}^1 \text{ mol-}^1 \Rightarrow -5000$$

Assuming $\Delta_r H^\circ$ and $\Delta_r S^\circ$ don't change with temperature does this reaction favor the products or the reactants at 400K?

C. There is no way to know without a balance equation

Principles of Chemistry II

$$2H_2O(g) \longleftrightarrow 2H_2(g) + O_2(g)$$

What is K for this reaction at 298K

extremely small

- B. extremely large
- C. approximately one

HARPEN

\rightarrow 2H₂(g) + O₂(g) 2H₂O(g) ← What is K for this reaction at 298K given that $\Delta_r G^\circ = +113.4$ kJ mol⁻¹ (113,400 I mil'/8.314

Principles of Chemistry II

© Vanden Bout

Back to our simple reaction

$$A + B \longleftrightarrow AB$$

Equilibrium?

From before we had K = 3

Is this system at equilibrium?

$$\frac{8}{100} = \frac{1}{100} = \frac{1}{100}$$

This the reaction quotient Q
Q is just like K but
the concentrations or pressures in the expression
are what you have right now

At 313 K,
$$\Delta_r G(= +41 \text{ kJ mol}^{-1})$$
 for this reaction $2H_2S(g) \longleftrightarrow H_2(g) + S_2(g)$

You find the following partial pressures at 313K H_2 is 1 atm, S_s is 1 atm, $H_2S = 2$ atm

How will this reaction proceed?

At 313 K, $\Delta_r G^\circ = +41$ kJ mol⁻¹ for this reaction

$$2H_2S(g) \longleftrightarrow H_2(g) + S_2(g)$$

You find the following partial pressures at 313K H₂ is 1 atm, S_s is 1 atm, H₂S = 2 atm

$$K = 2.2 \times 10^{-3}$$
 for this reaction (at some T)

$$2HI(g) \longleftrightarrow H_2(g) + I_2(g)$$

You start with a partial pressure of latm of HI what are the partial pressures at a constant P of latm and constant T

Principles of Chemistry II

© Vanden Bout