

We need to try to quantify amount of "radiation"

How much ionizing radiation is coming from a source?

How much ionizing radiation has interacted with you?

How much "equivalent" radiation?

Principles of Chemistry II

How much ionizing radiation is coming from a source?

```
Old Unit
Curie (Ci) = 3.7 \times 10^{10} decays s<sup>-1</sup>
New Unit
Becquerel (Bq) = 1 decay s<sup>-1</sup>
```

doesn't tell you the type of radiation just how many "events"

it is like the half-life combined with the amount **Principles of Chemistry II**

How much ionizing radiation has interacted with you?

Easiest to quantify for Gamma Radiation (remember this also what we are most worried about)

Gray (Gy) = $I J kg^{-1}$

Exposure to 1 J of Gamma radiation per Kilogram of matter

rad = 100 erg g⁻¹ (cgs unit) 100 rad = 1 Gy

Need to know the energy of the Gamma radiation, varies with distance from the source, shielding

Principles of Chemistry II

How much equivalent radiation?

What if you weren't exposed to gamma radiation?

Make a weighting factor to convert all types of radiation into Joule of gamma radiation

Unit

rem = Roentgen equivalent man = equiv of I rad 100 rem = I Sv

Principles of Chemistry II

Table 7.3	Physi	Physiological Effects of a Single Dose of Radiation		
Dose (rem)	Dose (Sv)	Likely effect		
0-25	0-0.25	No observable effect		
25-50	0.25-0.5	White blood cell count decreases slightly		
50-100	0.5 - 1	Significant drop in white blood cell count, lesions		
100-200	1–2	Nausea, vomiting, loss of hair		
200-500	2-5	Hemorrhaging, ulcers, possible death		
>500	>5	Death		

Principles of Chemistry II

Right now you are being exposed to nuclear radiation primarily from

- A. radiation coming from the nuclear plants in Japan
- B. small amounts of Uranium in the ground
- C. radiation from space
- D. the person sitting next to you

TABLE 20.7

Typical Radiation Exposures for a Person Living in the United States (1 millirem = 10^{-3} rem)

Source	Exposure (millirems/year
	(IIIIIII CIIIS) y cui
Radon	200
Cosmic radiation	27
From the earth	28
From building materials	3
In human tissues	39
Inhalation of air	5
Total from	302
natural sources	
X-ray diagnosis	50
Radiotherapy	10
Internal diagnosis therapy	s/ 1
Nuclear power industry	0.2
TV tubes, industr wastes, etc.	rial 2
Radioactive fallou	ut 4
Total from huma activities	n 67
Total	369

Principles of Chemistry II

Why is Radon such a problem now?

- A. increased Uranium mining
- B. it is not, we just know about it
- C. better housing insulation
- D. more houses with basements

Why is there still radiation?

Given the Earth was formed long ago and radioactive nuclei decay, why are there still lots of radioactive isotopes on Earth?

- A. because we started with more and they haven't all decayed
- B. more are constantly being created in nuclear reactors
- C. fall out from atomic bombs and tests
- D. radiation from space is constantly generating more
- E. more are created in the center of the Earth

Principles of Chemistry II

Where does radiation come from?

- · Unstable radioisotopes
 - Naturally found in environment
 - · Made by humans for medical, energy, defense purposes

Principles of Chemistry II

BACKGROUND RADIATON

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Principles of Chemistry II

© Vanden Bout

Fig. 7.19

Table 7.3	Annual Radiation Dose (Sample Calculation)*		
Sources of Radiat	tion	(µSv/yr)	
1. Cosmic radiation	n		
a. Sea level (U	260		
b. Additional d			
up to 1000 n	20		
1000 to 2000 m (6600 ft) add 50 µSv			
2000 to 3000 m (9900 ft) add 90 µSv			
3000 to 4000 m (13,200 ft) add 15 µSv			
4000 to 5000 m (16,500 ft) add 21 µSv			
2. Building material(s) used in your dwelling			
Stone, brick or concrete add 70 µSv			
Wood or other a	20		
3. Rocks and soil	460		
4. Food, water, an	2400		
5. Fallout from nu	10		
6. Medical and dental X-rays			
a. Chest X-ray,	0		
b. Gastrointest	0		
c. Dental X-ray	100		
7. Airplane travel			
5-hour flight at	300		
8. Other			
a. Live within	0.09		
b. Live within	0.3		
c. Use a compu	1		
d. Watch TV, a	10		
e. Smoke one p	0		
Total Annual Radiation Dose			
U.S. annual average	$ye = 3600 \mu Sv$		

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

*Sample calculation is for an adult nonsmoker living in the Midwest. Sources: U.S. Environmental Protection Agency, American Nuclear Society.

Principles of Chemistry II

Sr-90

Principles of Chemistry II

Radioactive Decay and Dating

We can use isotopic abundance as a means of determining the age of some substances

How is this possible if they are all decaying all the time?

Some compounds are constantly regenerated

¹⁴C is a radioactive isotope of carbon

The amount of ${}^{14}C$ in a substance relative to the amount of ${}^{12}C$ can be used to determine its age!

How is this possible since ¹⁴C is constantly decaying won't everything have the same ratio?

The amount of ¹⁴C in the atmosphere is essentially constant!

Principles of Chemistry II

http://en.wikipedia.org/wiki/Carbon-14

Principles of Chemistry II

Problems with carbon dating

The ¹⁴C concentration is not actually constant

The ¹⁴C concentration can vary by location

Nuclear testing has totally screwed this up for people 10,000 years from now

¹⁴C half life is ~5,000 years. So it is useful for the 1000's of years type dating

Principles of Chemistry II

Medical Uses of Radiation

Radiation is used to treat cancer because

- A. it only harms cancer cells
- B. it can effectively kill all living cells
- C. it kills all cells, but mostly only cancer cells
- D. it isn't used to treat cancer it causes cancer

Treating Thyroid Cancer

I-I31 accumulates in the thyroid

Treating Bone Cancer

Sr builds up in the bones

Sr-90 very bad 1/2 life of 29 years Sr-89 1/2 life of 50 days

Principles of Chemistry II

Principles of Chemistry II

What's so great about Fusion?

Principles of Chemistry II

What's so great about Fusion?

Abundant starting materials

Much less generation of radioactive "waste"

Why are we using it today?

Principles of Chemistry II

Why aren't we using Fusion?

- A. there have been no man-made nuclear fusion reactions
- B. there have been reactions but we can't contain them
- C. there have been reactions but only very very small ones
- D. B & C

Fusion

Requires "shoving" nuclei together

Very difficult to do

High temperature and High pressure No current scheme to start and maintain

Fission

Why is fission easy?

Principles of Chemistry II

2nd order reaction

Need high concentration of neutrons

high concentration of "fissionable" material

Principles of Chemistry II

Principles of Chemistry II

1. Warhead before firing; primary (fission bomb) at top, secondary (fusion fuel) at bottom, all suspended and beginning a fission in polystyrene foam.

2. HE fires in primary, compressing plutonium core into supercriticality reaction.

3. Fissioning primary emits X-rays which reflect along the inside of the casing, irradiating the polystyrene foam.

4. Polystyrene foam becomes plasma, compressing secondary, and plutonium sparkplug begins to fission.

5. Compressed and heated, lithium-6 deuteride fuel begins fusion reaction, neutron flux causes tamper to fission. A fireball is starting to form

Principles of Chemistry II