

First a refresher on nuclear reactions

How does a typical nuclear reaction compare to a chemical reaction in terms of energy change?

the energy per mole for a nuclear reaction is roughly

- A. 10 times larger
- B. 10³ times larger
- C. 10⁶ times larger
- D. 10⁹ times larger
- E. 10¹² times larger

Principles of Chemistry II

What is the energy released in this reaction?

 $H(g) + H(g) \longrightarrow H_2(g)$

Average	e Bond E	nergies (kJ/	(mol)				
	Multiple Bonds						
Н—Н	432	N—H	391	I—I	149	C=C	614
H—F	565	N—N	160	I—Cl	208	C≡C	839
H—Cl	427	N—F	272	I—Br	175	O=O	495
H—Br	363	N—Cl	200			$C = O^*$	745
H—I	295	N—Br	243	S—H	347	C≡O	1072
		N—O	201	S—F	327	N=O	607
C—H	413	O—H	467	S-Cl	253	N=N	418
C-C	347	0-0	146	S—Br	218	N=N	941
C-N	305	O—F	190	s—s	266	C≡N	891
С—О	358	O—Cl	203			C=N	615
C—F	485	O—I	234	Si—Si	340		
C-Cl	339			Si—H	393		
C—Br	276	F-F	154	Si-C	360		
C—I	240	FCl	253	Si—O	452		
C—S	259	F—Br	237				
		Cl-Cl	239				
		Cl—Br	218				
		Br—Br	193				
						*C=0(C0	$(0_2) = 799$

Principles of Chemistry II

What about this reaction? $^{2}_{1}H + ^{2}_{1}H \rightarrow ^{2}_{2}He$ A. $^{2}_{1}$ He B. ${}^{2}_{2}$ He C. ${}^{4}_{2}$ He

Principles of Chemistry II

How much energy is release per helium atom?

$$^{2}_{1}H + ^{2}_{1}H \longrightarrow ^{4}_{2}He$$

mass 2.0141 u 2.0141 u 4.0026 u

 $I u = 1.66 \times 10^{-27} \text{ kg}$ $c = 3.0 \times 10^8 \text{ m s}^{-1}$ $\Delta E = \text{mc}^2$

Like chemistry we can write a reaction down but it is not necessarily the one that happens

actually

$^{2}_{I}H + ^{2}_{I}H \longrightarrow ^{3}_{I}H + ^{1}_{I}P^{+}$

What reaction could be spontaneous?

Principles of Chemistry II

What reaction could be spontaneous?

 $\Delta E < 0$

 $\Delta m < 0$

Principles of Chemistry II

Why are we now only talking about energy instead of free energy (ΔG)

- A. the energy term is so large it dominates
- B. the entropy change is always zero in a nuclear reaction
- C. only molecules have entropy

Radioactive Decay

Some nuclei are more stable than others (they are lower in energy)

Therefore there can be a spontaneous reaction to change the nucleus to form the more stable atom

this change is accompanied by "nuclear radiation"

Principles of Chemistry II

What is nuclear radiation?

- A. electrons
- B. small nuclei
- C. high energy electromagnetic radiation
- D. A & B
- E. all of the above

Three basic types of nuclear radiation

- Radioactivity the spontaneous emission of radiation by certain elements (Madame Curie).
- Radiation was classified by Rutherford according to its penetrating power
 - alpha rays penetrated the least (a sheet of paper blocked them),
 - beta rays were more penetrating (a book stopped them),
 - and gamma rays were the most penetrating (requiring lead).

Three basic types of nuclear radiation

alpha radiation positive and massive

beta radiation negative and low mass

gamma radiation uncharged (no mass)

Principles of Chemistry II

Three basic types of nuclear radiation

Table 7.2		Types of Nuclear Radiation			
Туре	Symbol	Consists of	Charge	Change to nucleus that emits it	
Alpha	⁴ ₂ He	2 protons 2 neutrons	2+	The mass number decreases by 4, and the atomic number decreases by 2.	
Beta	$^{0}_{-1}e$	an electron	1-	The mass number does not change, and the atomic number increases by 1.	
Gamma	${}^0_0\gamma$	photon of energy	0	No change in either the mass number or in the atomic number.	

Principles of Chemistry II

Effects of all three is very different

Principles of Chemistry II

Alpha particles

If they get into your body they can be very harmful

bare Helium nucleus will rip electrons off molecules ionization of biomolecules = unhealthy you

Generally not harmful as they are absorbed by your outer layer of dead skin (bad news if they get in your lungs!)

<u>http://www.epa.gov/rpdweb00/understand/</u> <u>alpha.html#affecthealth</u>

Principles of Chemistry II

Gamma rays

This is what will do you in. Hard to protect against Highly ionizing. Like the world's worst sunburn (except the radiation can penetrate)

http://www.epa.gov/rpdweb00/understand/ gamma.html#affecthealth

Beta (-) decay

"Too many" neutrons

$${}^{14}_{6}C \longrightarrow {}^{14}_{7}N + {}^{0}_{-1}e^{-} + v$$

For this to happen spontaneously $\Delta m < 0$

Where is all the gamma radiation?

Principles of Chemistry II

Kinetics of radioactive decay

There is simply a chance of it happening.

Therefore the number of decays per second depends number of atoms

$${}^{14}_{6}C \longrightarrow {}^{14}_{7}N + {}^{0}_{-1}e^{-} + V$$

"unimolecular" First order in C

Half-life: the time required for the level of radioactivity to fall to one-half of its value. Example of decay of Pu-239.

Principles of Chemistry II

The most dangerous radioactive compounds will emit beta and gamma radiation and have half-lives that are

- A. very very short
- B. very very long
- C. some where in between
- D. the half life is irrelevant

Nuclide	t _{1/2}	Decay Mode [†]	Daughter
³ H (tritium)	12.26 years	e ⁻	³ ₂ He
⁸ ₄ Be	$\sim 1 \times 10^{-16}$ s	α	⁴ ₂ He
¹⁴ ₆ C	5730 years	e ⁻	¹⁴ 7N
²² 11Na	2.601 years	e ⁺	²² ₁₀ Ne
²⁴ 11Na	15.02 hours	e ⁻	²⁴ ₁₂ Mg
32P	14.28 days	e ⁻	32S
³⁵ S	87.2 days	e ⁻	35 17CI
36 17CI	$3.01 imes 10^5$ years	e ⁻	³⁶ ₁₈ Ar
⁴⁰ K	1.28×10^9 years	(e ⁻ (89.3%)	⁴⁰ Ca
	laenta especial da resta la resta da r	{ E.C. (10.7%)	⁴⁰ ₁₈ Ar
⁵⁹ Fe	44.6 days	e ⁻	59Co
60 27 Co	5.27 years	e ⁻	⁶⁰ Ni
⁹⁰ 38Sr	29 years	e ⁻	90 39
¹⁰⁹ 48Cd	453 days	E.C.	¹⁰⁹ 47Ag
125 53	59.7 days	E.C.	¹²⁵ 52Te
¹³¹ 531	8.041 days	e ⁻	¹³¹ ₅₄ Xe
¹²⁷ 54Xe	36.41 days	E.C.	127 53
¹³⁷ La	\sim 6 \times 10 ⁴ years	E.C.	¹³⁷ 56Ba
²²² ₈₆ Rn	3.824 days	α	²¹⁸ 84Po
²²⁶ 88Ra	1600 years	α	²²² 86Rn
²³² ₉₀ Th	1.40×10^{10} years	α	²²⁸ 88Ra
²³⁵ 92U	$7.04 imes 10^8$ years	α	²³¹ ₉₀ Th
²³⁸ 92U	$4.468 imes 10^9$ years	α	²³⁴ ₉₀ Th
²³⁹ ₉₃ Np	2.350 days	e ⁻	²³⁹ ₉₄ Pu
²³⁹ ₉₄ Pu	2.411×10^4 years	α	²³⁵ 92

TABLE 19.2 Decay Characteristics of Some Radioactive Nuclei

⁺E.C. stands for electron capture; e^+ for positron emission; e^- for beta emission; α , for alpha emission.

© 2007 Thomson Higher Education

Principles of Chemistry II

All nuclear reaction are first order?

- A. true
- B. false

Principles of Chemistry II

