If you know [H⁺] you know [OH⁻]

$$K_w = [H^+][OH^-]$$
$$\log(K_w) = \log([H^+][OH^-])$$
$$\log(K_w) = \log[H^+] + \log[OH^-]$$

$$log(10^{-14}) = log[H^+] + log[OH^-]$$

-14 = -pH - pOH
14 = pH + pOH

Principles of Chemistry II

Weak Acid

$$HA(aq) \longrightarrow H^{+}(aq) + A^{-}(aq)$$

$$HA \qquad H^{+} \qquad A^{-}$$

$$I \qquad C \qquad O \qquad O$$

$$C \qquad -x \qquad +x \qquad +x$$

$$E \qquad C-x \qquad +x \qquad +x$$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{(x)(x)}{C-x} \qquad assuming x << C}{x \sim \sqrt{K_{a}C}}$$

This is a great simple result

$$[H^+] \approx \sqrt{K_a C_a}$$

 C_a is the concentration of the acid K_a is the equilibrium constant for the acid

This assumes the concentration is large and that K_a is small

Principles of Chemistry II

What is the pH of a IM solution of weak acid with a $K_a = 10^{-6}$?

Principles of Chemistry II

HA weak acid A⁻ weak base

Principles of Chemistry II

$$BH^+(aq) \longrightarrow H^+(aq) + B(aq)$$

Weak acids		
HA and	BH+	Name is acid HA "acetic acid" BH ⁺ has a positive charge and an "extra" proton NH4 ⁺
Weak bases		A ⁻ is negative
B and	A-	usually name ends in "ate" CH3COO ⁻ acetate
		B is hardest to identify it is not one of the other three often it is an "amine"

What is the pH of a IM solution of sodium benzoate?

Principles of Chemistry II

How can I get K_b for benzoate if I have K_a for benzoic acid?

Principles of Chemistry II

Strength of Acids The larger the K_a the more [H⁺]

The larger the K_a the stronger the acid

Since $K_a \times K_b = K_w$

the larger the K_a the smaller the K_b

Identify Stuff from Cart

Principles of Chemistry II

What if we have a solution with both $HA \text{ and } A^-$ (or B and BH^+)

A solution with both the protonated and deprotonated
form of a weak acid or weak base
is a buffer (HA & A ⁻ or BH ⁺ & B)

What is the pH of a buffer that contains 1 mole of benzoic acid and 1 mole of of sodium benzoate? $K_a = 6.5 \times 10^{-5}$

Neutralization

A solution can be neutralized (equal amounts of H⁺ and OH⁻) by adding an acid or base to the solution

> As you are mixing two solutions, it is generally easiest to think in terms of moles (rather than molarity)

What volume of a 0.1 M NaOH will you need to add to 200 mL of a 0.2 M solution of HCI to neutralize it?

A.	100 mL	There are .04 moles of H ⁺ .2M x .2L to neutralize you'll need .04 moles of OH ⁺		
В.	200 mL	For that you'll need .4L of a .1M solution		
C.	300 mL			
D.	400 mL	Or you can look at it as the acid is twice		
E.	500 mL	therefore you'll need twice as much		

Principles of Chemistry II

How to deal with mixing acids and bases

First figure out what is in solution

Neutralize H^+ and any base (neutralize OH^-) and any acid

strong acid/strong base neutralization example

Principles of Chemistry II

weak acid/strong base neutralization example

Principles of Chemistry II

Why should I care

Proteins have lots of acid and base groups

Principles of Chemistry II

We want to "Buffer" against pH change

demo

Add NaOH to water and the pH shoots up to 12

Add NaOH to mixture of acetic acid and sodium acetate and the pH doesn't change at all

NaOH added to water

Water. Add 10⁻³ moles of OH⁻ to the solution

The $[OH^{-}] = 10^{-3} \text{ pOH} = 3 \text{ pH} = 11$

Principles of Chemistry II

NaOH added to buffer

initial concentration of [HA] = 0.1 Minitial concentration of $[A^-] = 0.1 \text{ M}$

add .001 moles of NaOH to 1L of solution

concentration of [HA] = .1 - .001 = 0.099concentration of $[A^-] = .1 + .001 = .101$ $10^{-4.75}$ $K_a = \frac{[H^+][A^-]}{[HA]} = \frac{[H^+](.101)}{0.099}$ pH = 4.76

Principles of Chemistry II

Water before adding NaOH pH = 7 after adding NaOH pH = 3

Buffer before adding NaOH pH = 4.75after adding NaOH pH = 4.76

the only way to change the pH of the buffer system dramatically is to add enough acid or base to substantially change either the HA or A⁻ concentrations