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Molecules 
 
 
Now we have to think about Quantum mechanics of molecules. 
 
Overview of what we will look at 
 
 
Simplest problem. 
 
H2

+.  A one electron system.  We can solve this exactly in the limit of the Born-Oppenheimer 
approximation (see below) 
 
H2

+   with molecular orbitals.  We will use this system to look at how to approximate the 
molecular wavefunctions using a linear combination of atomic orbitals (LCAO). 
 
Then we will look at homonuclear diatomics (same atoms) with MO. 
 
Then we will look at heteronuclear diatomics (different atoms) with MO. 
 
Finally we will look at polyatomics and start organic molecules 
 
 
 
 
How do deal with molecules?  What do we want to know? 
We are now going to use QM to look at bonding.  How will we define a bond.  This is a tricky 
ideas as strictly speaking there is not rigorous definition.  However, we can intuitively decide on 
what we mean by a “bond”.  Two atoms will be bonded together when we find there exists a 
small distance at which the electrons in the atoms have a lower energy compared to the atoms 
separated by a large distance.  That is the lowest energy state for the system is when the two 
nuclei are close (at a distance of the bond length) compared to infinitely separated (distinct 
atoms).  As such we need to do a lot of QM calculations to explore this distance.   
 
For starters we are again confronted by the fact that there are a lot of coordinates. Before we ran 
into trouble when we had two or more electrons.  Now we have the nuclei to deal with as well.  
We can write down the Hamiltonian.  It is the kinetic energy of the electrons, the kinetic energy 
of the nuclei, and Coulomb’s law.  The coulomb part as the electron-nucleus attraction (now 
there is a term for each electron and each nucleus), the is the electron-electron repulsions (unless 



we are talking about 1 electron systems like H2
+), and then there is nuclear-nuclear repulsions.   

To deal with this we are forced to make an approximation.  We assume that the nuclear positions 
are fixed relative to the electrons.  That is we say that the electrons can adjust infinitely fast to 
changes in the nuclear coordinates.  It is not that the electron (or molecular) energy is not 
dependent on the position of the nuclear, they are strongly affected.  What we say it that as far as 
the electrons are concerned the nuclei are not moving.  We will then solve the electronic part of 
the problem at different nuclear separations.  This is the Born-Oppenheimer approximation. 
(actually it is my hand wavy description of the B.O. approximation that actually states that we 
can separate the wavefunction into electronic and nuclear parts and that the kinetic energy 
operator for the nuclei does not operate on the electronic part of the wavefuction).   
 
Thus in the B.O. approximation we find the energy of the molecule at a particular geometry for 
the nuclei.  This is in fact one of the great uses of quantum chemistry.  If you want to know 
something about the geometry of the molecule, we can compute the energy at every possible 
geometry to find the lowest (most stable) one.  We can see what the barrier is to conversion to 
other geometries, etc… As you might imagine this gets to be a big problem very quickly as the 
more atoms you have the more possible geometries you have.  Thankfully today we have large 
computers.  Still big molecules are a problem for calculations with very high energies. 
 
What will we do.  For H2

+ we can solve the Schrödinger equation (in the BO limit).   These 
solutions are shown in the book and we looked at them in class.  What do they look like?  They 
have several key characteristics. 
 
First, they have either “bonding” or “anitbonding” character.  Bonding wavefunction do not have 
a node between the two nuclei.  Anti-bonding have a node.   
 
Next, they can have angular momentum along the bond axis.  This is best understood in terms of 
the shape (just like the different between atomic orbitals with different angular momentum 
s,p,d..). If the shape is such that there is electron density along the bond axis, this is a sigma 
orbital.  If it is off axis we have a pi orbital.  Higher angular momentum states are delta, … 
 
Finally, the wavefunctions have a symmetry based on reflection of the function through the 
origin (the point half way between the two nuclei).   If you reflect the function and get the same 
sign it is even or gerade (g).  If you get the opposite sign it is odd or ungerade (u).  Note: they are 
all symmetric.  You’ll get the same amplitude.  The only difference is the sign.   
 
Also, they each have an energy.  As you increase in energy you get more nodes.  The lowest state 
has zero nodes.  The first excited state has one. Etc…. The ground state has a lower energy than 
separated atoms at a small distance, it has an even symmetry, it is a sigma orbital, and it does not 
have a node between the atoms and is thus “bonding”.  The first excited state is sigma, its 
symmetry is u, and it is antibonding as it has a node between the nuclei.  Moreover, this state has 
an energy that is higher than the separated nuclei at all distances. 
 
 
Now we look at the exact same problem, but we solve it with approximate wavefunctions.  Why?  
Because this is how we will solve multi-electron molecules, and it is the simplest problem to 



looks at.  What do we do?  We do the same thing we did with multielectron atoms.  First we 
make the orbital approximations.  That is the total wavefunction is the product of one electron 
wavefunctions.  Now these wavefunctions describe the whole molecule not just one atom.  The 
molecular orbitals (MO) that we will use are linear combinations of atomic orbital (LCAO).  
That is they are the AO added or substracted from each other. 
 
What would we guess is the lowest energy solution?  A 1s on each H atom.  Why?  That is the 
lowest energy on the atoms.  That is what the molecule should look like at large internuclear 
separation.  It turns out that we are correct.  The lowest energy solution is a 1sA + 1sB .  That is a 
1s wavefunction on nucleus A and a 1s wavefunction on nucleus B.  There are some constants to 
keep the functions properly normalized.  When we bring these two together what does the MO 
look like?  The two orbitals have the same sign.  Thus when they overlap the constructively 
interfere (they add up together).  Thus the MO has a greater electron density between the two 
nuclei than you would have from two non-interaction H-atoms.  There is an excellent picture of 
this in the book that we looked at in class.  What about the energy.  It turns out this function has 
an energy that is lower than two separate H-atoms at some distance.  At large distances it is the 
same, at very short distances the repulsion of the nuclei leads to a very high energy, but at 
slightly larger distance the energy is significantly lower than the separate atoms.  Just like the 
lowest energy solution for H2

+ that we found directly.   Just the exact solution, this solution is 
sigma and even (g) and bonding. 
 
What do  the other solutions look like.  There is a combination in which the two 1s function have 
a different sign (phase).  The sign of the wavefunction only matters when we have two that 
interact.  There are only two choices.  They are the same (the lower energy solution we discussed 
moments ago) or they are different.  The one with different signs we can think of as 1sA

 – 1sB.  
This now has destructive interference when we bring the two together.  This leads to a node 
between the two nuclei.  This on must be anti-bonding.  Just like the exact solutions this one is 
sigma, u, and anti-bonding.   
 
We can now think about similar calculations for H2

+, H2, He2
+, and He2. 

It turns out that just like the multi-electron atoms, the orbital energy ordering is the same.  Thus 
we now have a set of MO that we can start to fill up in the same way that we has a set of atomic 
orbitals that we filled for looking at different elements.  The lowest energy state is the σg1s the 
next highest state is the σu1s

*.    
 
If you start to put the electrons in these H2

+  has only 1 electron and thus it goes in the lowest 
energy orbital.  H2 has two electrons.  Both can go in the lowest energy orbital.  Thus we now 
have two electrons in a MO with a lower energy compared to the AO.  Thus we would predict 
that  H2 would have a stronger bond than H2

+.  If we look at He2
+ it has three electrons. We 

cannot put a third electron in the lowest energy MO so we are force to put an electron in the anti-
bonding σu1s

* orbital.   The total energy depends on all three electrons.  Thus the energy for He2
+ 

should be higher than that of H2 as it now has two bonding electrons and one antibonding.  In the 
simple limit where the anti-bonding are higher in energy by the same amount that the bonding 
are lower in energy they cancel.  Thus we would expect this to be similar to H2

+ as it would 
effectively have only one bonding eletron (2 bonding – 1 antibonding).  Finally, we would 



predict that He2
 does not exist as it would have to have the same number of bonding and anti-

bonding electrons.  Thus it would have the same energy as the separated atoms.  Thus no bond. 
 
 
 
 


