Organic

You know more than you think already

What you will need
Lewis dot, VSEPR
VB, hybrid orbitals, MO
electronegativity
intermolecular forces

Step I

Nomenclature

prefix parent suffix

parent is the name of the longest carbon chain. Each length has a given name

I carbon methane 2 carbons ethane 5 carbons pentane Step I

Nomenclature

prefix parent suffix

prefix is the name of any substituent groups (sidechains)

I carbon methyl 2 carbons ehtyl 5 carbons pentyl

Step I

Nomenclature

prefix parent suffix

suffix is the name of the "functional group"

-ol alcohol

-one ketone

-ane alkane

Problem number I

Lots of carbon and hydrogen atoms
Pain to draw them all

implicit hydrogens (on the chalk board)

Names for parent groups

First lets look at alkanes (essentially no functional group)

All single bonds

suffix is ane

methane butane 5-methyloctane

Name those carbon chains

Number of Carbons	Prefix	Structure		
1	<i>Meth</i> ane	CH ₄		
2	<i>Eth</i> ane	CH ₃ CH ₃		
3	<i>Prop</i> ane	CH ₃ CH ₂ CH ₃		
4	Butane	CH ₃ (CH ₂) ₂ CH ₃		
5	Pentane	CH ₃ (CH ₂) ₃ CH ₃		
6	Hexane	CH ₃ (CH ₂) ₄ CH ₃		
7	Heptane	CH ₃ (CH ₂) ₅ CH ₃		
8	Octane	CH ₃ (CH ₂) ₆ CH ₃		
9	<i>Non</i> ane	CH ₃ (CH ₂) ₇ CH ₃		
10	Decane	CH ₃ (CH ₂) ₈ CH ₃		
11	Undecane	CH ₃ (CH ₂) ₉ CH ₃		
12	Dodecane	CH ₃ (CH ₂) ₁₀ CH ₃		

C₁₂H₂₆

Name those sidechains

Number of carbon atoms	Formula	Name of alkane	Name of alkyl group	Formula
1	CH₄	methane	methyl	CH ₃ —
2	CH ₃ CH ₃	ethane	ethyl	CH ₃ CH ₂ —
3	CH3CH2CH3	propane	propyl	CH ₃ CH ₂ CH ₂ -
4	$CH_3(CH_2)$, CH_3	butane	butyl	$CH_3(CH_2), CH_2-$
.5	$CH_3(CH_2)_3CH_3$	pentane	pentyl	CH ₃ (CH ₂) ₃ CH ₂ -
6	$CH_3(CH_2)_4CH_3$	hexane	hexyl	CH ₃ (CH ₂) ₄ CH ₂ -
7	$CH_3(CH_2)_5CH_3$	heptane	heptyl	$CH_3(CH_2)_5CH_2$
8	$CH_3(CH_2)_6CH_3$	octane	octyl	CH ₃ (CH ₂) ₆ CH ₂ -
9	$CH_3(CH_2)_7CH_3$	nonane	nonyl	CH ₃ (CH ₂) ₇ CH ₂ -
10	$CH_3(CH_2)_8CH_3$	decane	decyl	CH ₃ (CH ₂) ₈ CH ₂ -
11	$CH_3(CH_2)_9CH_3$	undecane	undecyl	$CH_3(CH_2)_9CH_2$
12	$CH_3(CH_2)_{10}CH_3$	dodecane	dodecyl	$CH_3(CH_2)_{10}CH_2-$

What about sidechains?

Main the main chain (the longest)

Then name the side chain

Number the sidechain numbering from the functional group

Always use the smallest possible number

The next simplest add a functional group


C=C Double bond

suffix -ene

C≡C Triple bond

suffix -yne

The following compound is

2-hexene

or hex-2-ene

Why?

Double bond so it is an alkene
The longest chain is six carbons - hex
the double bond is in position 2
(note it is not 4 as that is larger)

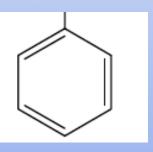
The following compound is

Double bond --- Alkene Longest chain is six - hex Sidechain is methyl

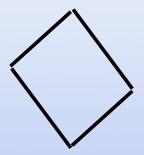
Number functional group first so -ene is at position 2 -methyl group is at position 5

5-methyl hex-2-ene

5 methyl 2-hexene


Other side-chains

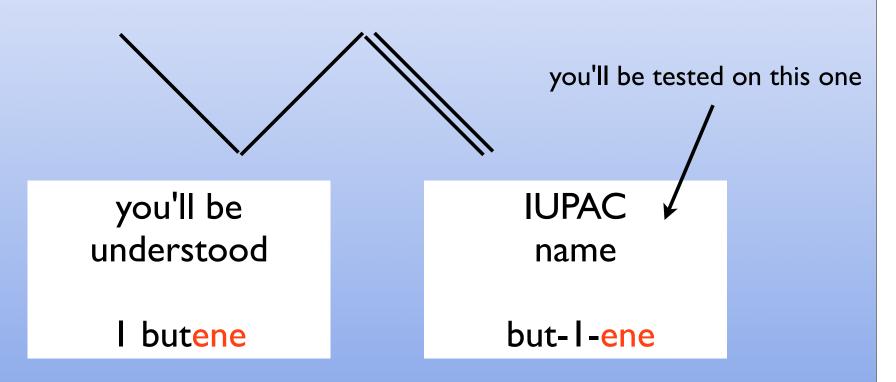
Halogens
F Fluoro
Cl Chloro
Br Bromo
I lodo


OH group hydroxy

NH₂ group amino

Benzene Ring phenyl

Cyclic Hydrocarbons the carbon chain connects back to itself

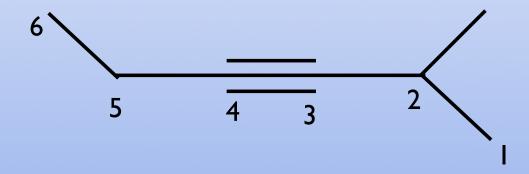


add a cyclo to the front

cyclobutane

Nomenclature with functional group

Put the number by before the functional group suffix



Principles of Chemistry II

Alkyne

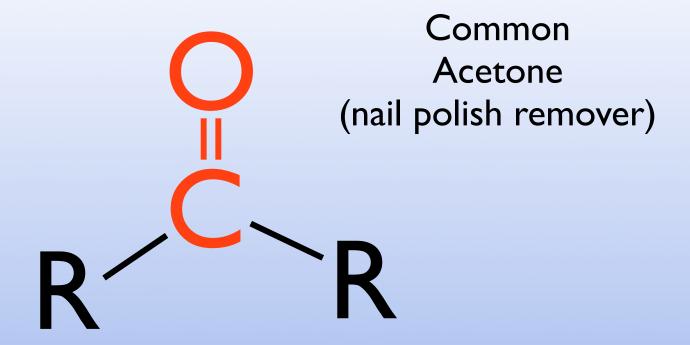
Carbon Carbon Triple Bond

Suffix -yne

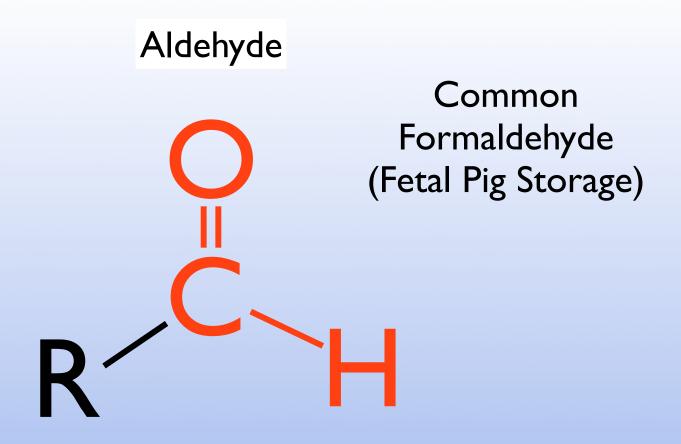
2 methyl hex-3-yne

Other functional groups

Common Ethanol

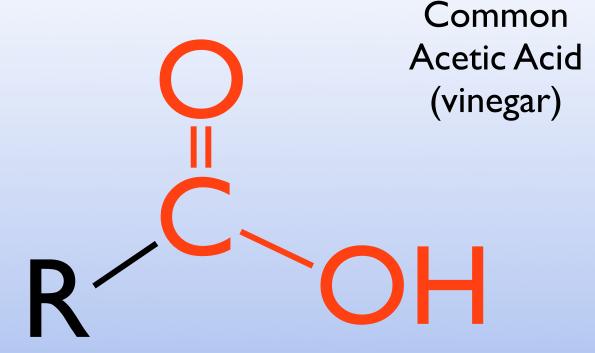

R-OH

R = Generic representation of the rest of the molecule

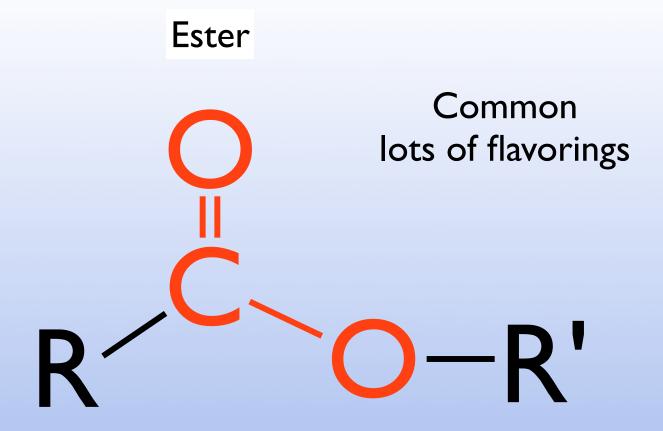

functional group

-OH group is an alcohol suffix is -ol

Ketone



carbon double bonded to an oxygen bonded to carbons on either side suffix is -one



carbon double bonded to an oxygen bonded to carbon on one side (like a ketone at the end of a chain) suffix is -al

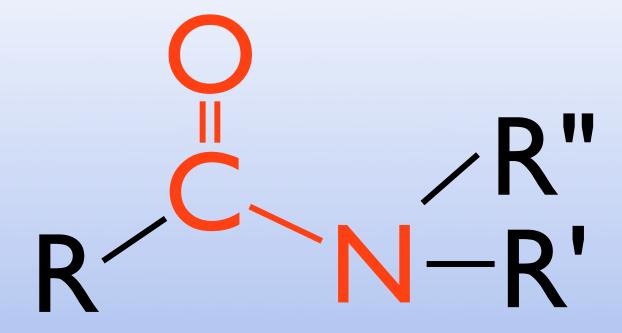
Carboxylic Acid

carbon double bonded to an oxygen bonded to carbon on one side OH on the other side suffix is -oic acid

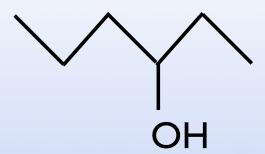
carbon double bonded to an oxygen bonded to carbon on one side OR on the other side suffix is -oic acid

Ether

Diethyl Ether (knocks you out)

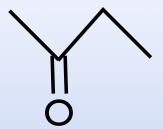

carbon oxygen in the middle of the chain suffix is -ether

Primary Amine


$R-NH_2$

-NH₂ group is an amine suffix is -amine

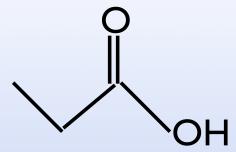
Amide



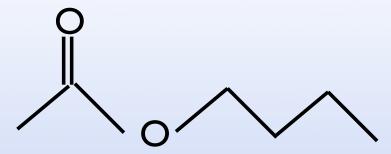
carbon double bonded to an oxygen bonded to carbon on one side N on the other side suffix is -amide

functional group - alcohol longest chain 6 - hex no side chains

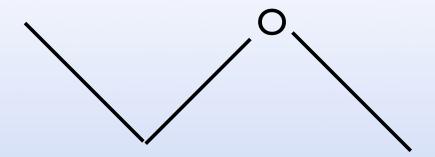
3 hexanol or hexan-3-ol


functional group - ketone longest chain 4 - butan functional group at position 2

butan-2-one or 2 butanone

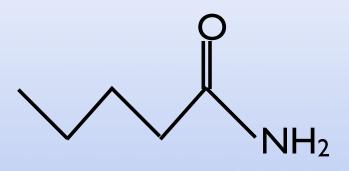

two functional groups there is a rank order (alkene, alkyne are last)

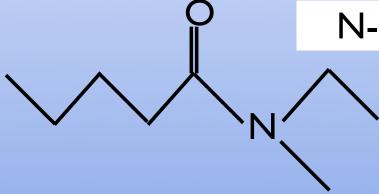
aldehyde and alkene
aldehyde always at the end (position I)
longest chain 6
hex-3-enal
or
3 hexenal


functional group - carboxylic acid longest chain 4 - butan

butanoic acid

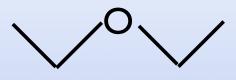
functional group - ester treat part on "attached" to the oxygen as sidechain longest chain with functional group is 2 - ethan sidechain is 4 - butyl

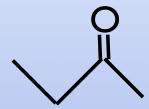

butyl ethanoate

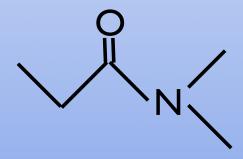

Functional group - ether treat as two side chains one is ethyl the other is methyl

methyl ethyl ether

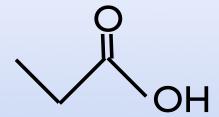
Naming amide Treat part with C=O as parent parts on the N as sidechains

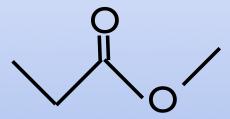

pentanamide


N-ethyl-N-methylpentanamide


Amine

Ether


Ketone


Amide

Alcohol

Carboxylic Acid

Ester

Alkene